
Writing Python
Libraries

Import Statements and Packaging

Basics
A Python file is called either a script or a module, depending on how it’s run:

• Script: Run file as a top-level script
- python	file.py	
- __name__	==	“__main__”

• Module: Import file as a module
- python	-m	package.file	
- import	package.file	(inside some other file)
- __name__	==	“package.file”	

Python packages are collections of modules. In a directory structure, in order for
a folder containing Python files to be recognized as a package, an __init__.py
file is needed (even if empty).

If a module's name has no dots, it is not considered to be part of a package.

Field containing module name

Run a file as a module

Name depends on root package

Package Basics
Python packages are collections of modules. In a directory structure, in order for
a folder containing Python files to be recognized as a package, an __init__.py
file is needed (even if empty).

Cannot be accessed from root directory
using non_package.module1

Can be accessed from root directory
using package.subpackage.module3

Installable Packages
Then the package can be installed by running:

• python	setup.py	install
- This command will install the package in the site-packages directory of the

current Python distribution so it can be imported in any Python file using
simply:	import	project

• python	setup.py	develop
- This command will install symbolic links to the current package source

code in the site-packages directory of the current Python distribution so it
can be imported in any Python file using simply:	import	project

- Any changes made to the local project files, will be reflected in the
installed version of the project

The --user option can optionally be used to install in the current user site-
packages directory instead of the system site-packages directory.

Import Basics
Packages and modules can be imported in other Python files. Absolute imports
are relative to every path in the module search path (sys.path) for the packages
along with the current directory.

module2 shall use:
import	module1

module1 shall use:
import	subpackage.module3

Relative Imports
• Relative imports use the module's name to determine where it is in a package.

If __name__	==	“package.subpackage.module”, then:
from	..	import	other, resolves to a module with
__name__	==	“package.other”

• __name__	must have at least as many dots as there are in the import
statement.

• If __name__ has no dots (“__main__”), then a
“relative-import	in	non-package” error is raised.	

If you use relative imports in a Python file and you want to run it use the
command: python	-m	package.subpackage.module

Package Name Space
When a Python package is imported, we want to be able to define its name
space. This is the set of names (modules, packages, functions, fields, or
classes) that this package contains.

Sometimes we might want to expose names of a sub-package to the root
package, for convenience. For example: numpy.core.ndarray	->	numpy.ndarray	

We can do that using:
• __all__ field of modules
• __init__.py file of packages

Care must always be taken to prevent name space pollution and collisions
(i.e., overloaded names).

__all__ Field
The __all__.py field can be used to specify which symbols of a module to
export. The exported symbols are the ones imported when * is used.

If omitted, all names not starting with an underscore (_) are exported.

module.py	 Imports fn1, fn2, fn3
if __all__ is omitted
Imports fn1, fn2
if __all__ is specified

__init__.py
The __init__.py file can be used to export module or sub-package symbols to
the package namespace.

Common Pattern
Exposes module3 to
the package name
space

Common Practices
• Python project directory structure:

• Add an __author__ field to each file with the author’s name/ID. This helps with
knowing who to contact when questions/bugs arise with the relevant file.

• Add TODO items in the code using a comment line with format:
#	TODO(author):	This	needs	to	be	done.

As we will soon see, this structure
also helps with making our libraries
installable.

Installable Packages
We often want to make our packages/libraries installable for distribution or for
installing them on a production server. We can do that using the setuptools
package. Simply add a setup.py script in the project’s root directory:

Example / Template

package location mapping

package dependencies

References
• Official Python documentation at http://docs.python.org
• https://stackoverflow.com/questions/14132789/relative-imports-for-the-billionth-time

http://docs.python.org
https://stackoverflow.com/questions/14132789/relative-imports-for-the-billionth-time

