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Logistic Regression
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Logistic Regression Decision Boundary

Linear classification boundary, but why?
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Training Logistic Regression
We use maximum condition likelihood estimation (MCLE):

But how do we solve this?

Convex Optimization
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Gradient Descent
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Step Size Selection

Too Small Too BigJust Right



Step Size Selection
Exact Line Search: ⌘⇤ = argmin
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Most often we cannot obtain a closed-form solution!

Backtracking Line Search: 0 < � < 1Choose , 0 < ↵ < 0.5
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We start with a big step size and keep decreasing it until the update 
generates a sufficient decrease for our function. We want out next iterate 
to beat the criterion value of a linear approximation of our function at the 
current point. The above inequality is called the Armijo rule and it is often 
used in combination with a curvature condition. Check the wikipedia 
page on Wolfe conditions for more informations. 

https://en.wikipedia.org/wiki/Wolfe_conditions


Other Convex Optimization Methods

There are other convex optimization methods that use 
even second derivative information, such as Newton’s 
method.

But, what is convexity?

Use the inverse Hessian as the step size 
(makes use of curvature information)

If the Hessian is too expensive to compute, 
people might also use quasi-Newton methods 

such as the well known LBFGS algorithm.



Convexity

Non-convex Convex

Local Minima
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Operations that Preserve Convexity

If                  are convex,Nonnegative linear combinations: f1, . . . , fm
then                                is convex for any                         .↵1f1 + · · ·+ ↵mfm ↵1, . . . ,↵m � 0

Affine compositions: If    is convex, then f
g(w) = f(Aw + b) is also convex.

If                  are convex, thenPointwise maximum: f1, . . . , fm
then                             is also convex.max {f1, . . . , fm}



Back to Logistic Regression

@L(w)

@w
=

nX

i=1

x

i

 
yi � ew

>
x

i

1 + ew>
x

i

!

w = argmax

w

L(w) = argmax

w

nX

i=1

yi(w>
x

i
)� log (1 + ew

>
x

i

)

w  w + ⌘
@L(w)

@w

Sum of affine functions and convex functions.



Logistic Regression with a Prior
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More generally we call this L2 regularization:
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Regularization in Optimization

More generally we have Lp regularization:
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L1 is a special case, frequently used in practice to induce 
sparsity in the solution:
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Stochastic Gradient Descent
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We can randomly sample terms of that sum and get an 
estimate of the gradient in order to speed things up


