Graphical Models Review

Anthony Platanios

Graphical Models

Directed
Bayesian Networks

Undirected
Markov Random Fields

Model

- Conditional independence assumptions
- Joint probability distribution of variables (parameterized)

Combine Prior Knowledge

- Over dependencies
- Over parameter values

Independence

$$
\begin{array}{cc}
\text { Conditional } & \text { Marginal } \\
X \Perp Y \mid Z & X \Perp Y \\
\Leftrightarrow & \Leftrightarrow \\
\mathbb{P}(X \mid Y, Z)=\mathbb{P}(X \mid Z) & \mathbb{P}(X \mid Y)=\mathbb{P}(X)
\end{array}
$$

Marginal

How do directed graphical models help?

Bayesian Networks - Directed GM

Chain Rule of Probability

$$
\begin{aligned}
\mathbb{P}(A, B, C, D, E, F)= & \mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(C \mid A, B) \\
& \mathbb{P}(D \mid A, B, C) \mathbb{P}(E \mid A, B, C, D) \\
& \mathbb{P}(F \mid A, B, C, D, E)
\end{aligned}
$$

Bayesian Network

$$
\begin{aligned}
\mathbb{P}(A, B, C, D, E, F)= & \mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(D) \\
& \mathbb{P}(C \mid A, D) \\
& \mathbb{P}(E \mid B, C) \\
& \mathbb{P}(F \mid C)
\end{aligned}
$$

Bayesian Networks - Directed GM

Smaller conditional

 probability tables (CPTs)

Bayesian Network

$$
\begin{aligned}
\mathbb{P}(A, B, C, D, E, F)= & \mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(D) \\
& \mathbb{P}(C \mid A, D) \\
& \mathbb{P}(E \mid B, C) \\
& \mathbb{P}(F \mid C)
\end{aligned}
$$

Bayesian Networks - Directed GM

Nodes encode variables

Edges encode dependencies

$$
\begin{aligned}
\mathbb{P}(A, B, C, D, E, F)= & \mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(D) \\
& \mathbb{P}(C \mid A, D) \\
& \mathbb{P}(E \mid B, C) \\
& \mathbb{P}(F \mid C)
\end{aligned}
$$

Bayesian Networks - Directed GM

In general:

$$
\mathbb{P}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

But can we determine general conditional independence properties?

D-Separation

Yes, with the d-separation criterion!

In order to see how this is possible, let us first consider three simple cases. Then we are going to see a simple way (more like a game) for figuring out independence properties of a graph using this criterion.

D-Separation

Case \#1: Head to Tail

"Heads" and "tails" refer to the connecting edges heads (i.e., arrow pointers) and tails

Shaded nodes are observed and we want to see if observing them induces any independencies

D-Separation

Case \#1: Head to Tail

$$
\begin{aligned}
\mathbb{P}(A, B, E) & =\mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(E \mid B) \Rightarrow \\
\mathbb{P}(A, E \mid B) & =\frac{\mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(E \mid B)}{\mathbb{P}(B)} \\
& =\frac{\mathbb{P}(A, B)}{\mathbb{P}(B)} \mathbb{P}(E \mid A) \\
& =\mathbb{P}(A \mid B) \mathbb{P}(E \mid B) \\
A & \perp \text { H| }
\end{aligned}
$$

D-Separation

Case \#2: Tail to Tail

$$
\begin{aligned}
\mathbb{P}(C, E, F) & =\mathbb{P}(C) \mathbb{P}(E \mid C) \mathbb{P}(F \mid C) \Rightarrow \\
\mathbb{P}(E, F \mid C) & =\frac{\mathbb{P}(C) \mathbb{P}(E \mid C) \mathbb{P}(F \mid C)}{\mathbb{P}(C)} \\
& =\mathbb{P}(E \mid C) \mathbb{P}(F \mid C) \\
\boldsymbol{F} & +\ldots
\end{aligned}
$$

D-Separation

Case \#3: Head to Head \longrightarrow Also known as colliders

Explaining Away:
A: Earthquake
B: Break-in
C: Motion alarm

$$
\begin{aligned}
\mathbb{P}(A, C, D) & =\mathbb{P}(A) \mathbb{P}(D) \mathbb{P}(C \mid A, D) \Rightarrow \\
\mathbb{P}(A, D \mid C) & =\frac{\mathbb{P}(A) \mathbb{P}(D) \mathbb{P}(C \mid A, D)}{\mathbb{P}(C)} \\
& =\mathbb{P}(A, D \mid C)
\end{aligned}
$$

Given that the motion alarm went off, if we learn that a burglar broke in, then we know that it's unlikely an earthquake happened The burglary event "explains away" the earthquake event

D-Separation through Bayes Ball

This might be a little complicated to remember and apply, so let's look at an easier way to work out dseparation

D-Separation through Bayes Ball

Imagine a ball, Bayes ball. This ball is allowed to "travel" on our model, but only in certain allowed ways:

Two variables are conditionally independent when Bayes ball cannot travel from one to the other

D-Separation through Bayes Ball

Imagine a ball, Bayes ball. This ball is allowed to "travel" on our model, but only in certain allowed ways:

Case \#1: Head to Tail

Case \#2: Tail to Tail

Case \#3: Head to Head

Back to our Example

Is \mathbf{B} independent of \mathbf{D} given \mathbf{C} ?

Back to our Example

Is \mathbf{B} independent of \mathbf{D} given \mathbf{C} ?

The blue arrows correspond to the ball path

Back to our Example

Is \mathbf{B} independent of \mathbf{D} given \mathbf{C} ?

Bayes ball could reach \mathbf{D} from \mathbf{B} and thus the answer is NO

The blue arrows correspond to the ball path

Back to our Example

Is \mathbf{F} independent of \mathbf{D} given \mathbf{C} ?

The blue arrows correspond to the ball path

Back to our Example

Is \mathbf{F} independent of \mathbf{D} given \mathbf{C} ?

The blue arrows correspond to the ball path

Back to our Example

Is \mathbf{F} independent of \mathbf{D} given \mathbf{C} ?

The blue arrows correspond to the ball path

Back to our Example

Is \mathbf{F} independent of \mathbf{D} given \mathbf{C} ?

Bayes ball got stuck going from D from \mathbf{F} and thus the answer is YES

The blue arrows correspond to the ball path

A More Complicated Example

Where can Bayes ball not go to, starting from the dashed variable?

A More Complicated Example

Where can Bayes ball not go to, starting from the dashed variable?

Markov Blanket

Markov Blanket

A variable is independent of every other variable in the model, given its parents, its children, and its children's parents

Bayes ball

 is stuck!!!

That is called the Markov blanket of a variable

Dependencies...so what?

We talked so much about understanding when there are dependencies/independencies between variables and how to model them, but why are they important?

Graphical Model Problems

Inference

Very related since we often infer probability distributions
over parameter values

Structure

Hard

Inference in Graphical Models

Probability of joint assignment over all \mathbf{n} variables is
easy - we just have to lookup the conditional probability tables ($\mathrm{O}(\mathrm{n}$) complexity)

Marginal probability distribution of a single variable is generally hard - we need to sum over all possible assignments to the rest of the variables $\left(\mathcal{O}\left(|\mathcal{D}|^{n}\right)\right.$ complexity)
$\mathbb{M}\left(X_{i}\right)=\sum_{X_{1} \in \mathcal{D}_{1}} \cdots \sum_{X_{i-1} \in \mathcal{D}_{i-1}} \sum_{X_{i+1} \in \mathcal{D}_{i+1}} \cdots \sum_{X_{n} \in \mathcal{D}_{n}} \mathbb{P}\left(X_{1}, \ldots, X_{n}\right)$
Conditional independencies help us "move those sums around" and reduce complexity

Marginal Example

Linear Chain

$$
\mathbb{P}(A, B, C, D)=\mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(C \mid B) \mathbb{P}(D \mid C)
$$

Marginal Example

Linear Chain

$$
\mathbb{P}(A, B, C, D)=\mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(C \mid B) \mathbb{P}(D \mid C)
$$

$$
\mathbb{M}(A)=\mathbb{P}(A) \sum_{B \in \operatorname{Val}(B)} \mathbb{P}(B \mid A) \sum_{C \in \operatorname{Val}(C)} \mathbb{P}(C \mid B) \sum_{D \in \operatorname{Val}(D)} \mathbb{P}(D \mid C)
$$

Each step costs $|\mathcal{D}|^{2}$ operations and so the complexity is now quadratic:

$$
\mathcal{O}\left(n|\mathcal{D}|^{2}\right)
$$

Learning in Graphical Models

	Fully Observed Variables	Partially Observed Variables
Known Structure	Easy	Interesting Frequent
Unknown Structure	Doable	Hard

Learning in Graphical Models

We want to estimate the model parameters for a known structure and with fully observed data

$$
\begin{aligned}
& \text { Let } \mathbb{P}(E=e \mid B=b, C=c) \triangleq \theta_{e \mid b, c} \\
& \qquad \begin{aligned}
\log \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta})= & \sum_{k=1}^{K} \log \mathbb{P}\left(a_{k}\right)+\log \mathbb{P}\left(b_{k} \mid a_{k}\right) \\
& +\log \mathbb{P}\left(d_{k}\right)+\log \mathbb{P}\left(c_{k} \mid a_{k}, d_{k}\right) \\
& +\log \mathbb{P}\left(e_{k} \mid b_{k}, c_{k}\right)+\log \mathbb{P}\left(f_{k} \mid c_{k}\right) \\
\frac{\partial \log \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta})}{\partial \theta_{e \mid b, c}}= & 0 \Rightarrow \\
\hat{\theta}_{e \mid b, c}= & \frac{\sum_{k=1}^{K} \mathbb{1}_{e_{k}=e \wedge b_{k}=b \wedge c_{k}=c}}{\sum_{k=1}^{K} \mathbb{1}_{b_{k}=b \wedge c_{k}=c}}
\end{aligned}
\end{aligned}
$$

Easy

Learning in Graphical Models

We now want to estimate the model parameters for a known structure and with partially observed data

Before

$$
\boldsymbol{\theta} \leftarrow \arg \max _{\boldsymbol{\theta}} \log \mathbb{P}(A, B, C, D, E, F \mid \boldsymbol{\theta})
$$

Now

$$
\boldsymbol{\theta} \leftarrow \arg \max _{\boldsymbol{\theta}} \mathbb{E}_{C \mid A, D}\{\log \mathbb{P}(A, B, C, D, E, F \mid \boldsymbol{\theta}\}
$$

Expectation-Maximization (EM) Algorithm

EM Algorithm

We begin with an arbitrary choice for our parameters and iterate over the following steps, until convergence

E Step: Estimate the values of the unobserved variables using the current parameters

M Step: Use the observed
variables along with our estimates of the unobserved variables from the previous E step to compute a
Guaranteed to find a local maximum maximum likelihood estimate for our parameters and update them

EM Algorithm

We begin with an arbitrary choice for our parameters and iterate over the following steps, until convergence

E Step

$$
\begin{aligned}
\mathbb{E}\{C \mid A=a, D=d\} & =\mathbb{P}(C=1 \mid A=a, D=d) \\
& =\theta_{C=1 \mid a, d}
\end{aligned}
$$

M Step

$$
\hat{\theta}_{c \mid a, d}=\frac{\sum_{k=1}^{K} \mathbb{1}_{c_{k}=1 \wedge c_{k}=c \wedge d_{k}=d} \mathbb{E}\left\{C \mid A=a_{k}, D=d_{k}\right\}}{\sum_{k=1}^{K} \mathbb{1}_{a_{k}=a \wedge d_{k}=d}}
$$

Guaranteed to find a local maximum

EM Algorithm

In the simple discrete variable case, we do the same thing as in maximum likelihood estimation, but we simply replace each unobserved variable count by its expected count

EM is not exact, but why is it guaranteed to find a local maximum?

EM Algorithm

Intuition: The following holds for any distribution $q(Z)$

$$
\begin{gathered}
\log p(X \mid \theta)=\mathcal{L}(q, \theta)+\operatorname{KL}(q \| p) \\
\mathcal{L}(q, \theta)=\sum_{Z} q(Z) \log \frac{p(X, Z \mid \theta)}{q(Z)} \\
\mathrm{KL}(q \| p)=-\sum_{Z} q(Z) \log \frac{p(Z \mid X, \theta)}{q(Z)} \longrightarrow
\end{gathered}
$$

KL Divergence (non-negative from homework)
X : observed variables
Z : unobserved variables

EM Algorithm

Intuition: The following holds for any distribution $q(Z)$

$$
\begin{gathered}
\log p(X \mid \theta)=\mathcal{L}(q, \theta)+\operatorname{KL}(q \| p) \\
\frac{\mathcal{L}(q, \theta)=\sum_{Z} q(Z) \log \frac{p(X, Z \mid \theta)}{q(Z)} \leq \log p(X \mid \theta)}{\frac{\mathrm{KL}(q \| p) \uparrow}{\mathcal{L}(q, \theta)}{ }^{\uparrow}} \overline{\log p(X \mid \theta)}
\end{gathered}
$$

EM Algorithm

E Step Intuition: We maximize $\mathcal{L}\left(q, \theta^{\text {old }}\right)$ while holding $\theta^{\text {old }}$ fixed. We thus set

$$
q(Z)=p\left(Z \mid X, \theta^{\text {old }}\right)
$$

Remember that $\log p(X \mid \theta)=\mathcal{L}(q, \theta)+\operatorname{KL}(q \| p)$

EM Algorithm

M Step Intuition: We maximize the lower bound with respect to θ while holding $q(Z)$ fixed

Markov Chain Monte Carlo (MCMC)

Conditional probability distributions when dealing with a known structure and partially observed variables can be computed using sampling - Markov Chain Monte Carlo (MCMC) methods are often used

Gibbs sampling is a very common such method

- Initialize unobserved variables to some values
- Sample each unobserved variable in sequence, while fixing the rest to their last sampled value
- Burn (i.e., throw away) the first few samples and then thin the rest (e.g., keep every $10^{\text {th }}$ sample)

The distribution of the samples converges to the true posterior distribution of the unobserved variables

Bayesian Network Structure Learning

Learning structure is not that easy

- In general requires lots of data (can overfit easily)
- Huge search space - we use priors to constrain it

But there exist some algorithms for certain special cases
e.g., Chow-Liu for tree structures

Next time
Finds the tree structure that
minimizes KL divergence
(i.e., mutual information)

Questions?

