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Graphical Models

Directed Undirected
Markov Random FieldsBayesian Networks

Model

• Conditional independence assumptions 
• Joint probability distribution of variables (parameterized)

Combine Prior Knowledge

• Over dependencies 
• Over parameter values



Independence

Conditional Marginal
X ?? Y | Z

,
P(X | Y, Z) = P(X | Z)

X ?? Y

,
P(X | Y ) = P(X)

How do directed graphical models help?



Bayesian Networks - Directed GM
Chain Rule of Probability

P(A,B,C,D,E, F ) = P(A)P(B | A)P(C | A,B)

P(D | A,B,C)P(E | A,B,C,D)

P(F | A,B,C,D,E)
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Bayesian Network

P(A,B,C,D,E, F ) = P(A)P(B | A)P(D)

P(C | A,D)

P(E | B,C)

P(F | C)



Bayesian Networks - Directed GM

D

B C

A

E F

Bayesian Network

P(A,B,C,D,E, F ) = P(A)P(B | A)P(D)

P(C | A,D)

P(E | B,C)

P(F | C)

Smaller conditional 
probability tables (CPTs) Less Parameters



Bayesian Networks - Directed GM

D

B C

A

E F

P(A,B,C,D,E, F ) = P(A)P(B | A)P(D)

P(C | A,D)

P(E | B,C)

P(F | C)

Edges encode 
dependencies

Nodes encode 
variables



Bayesian Networks - Directed GM

In general:

P(X1, . . . , Xn) =
nY

i=1

P(Xi | Parents(Xi))

But can we determine general conditional 
independence properties?



D-Separation

Yes, with the d-separation criterion!

In order to see how this is possible, let us first consider 
three simple cases. Then we are going to see a simple 
way (more like a game) for figuring out independence 
properties of a graph using this criterion.



D-Separation

D

B C

A

E F

Case #1: Head to Tail

Shaded nodes are observed and we want to see if 
observing them induces any independencies

“Heads” and “tails” refer to 
the connecting edges heads 
(i.e., arrow pointers) and tails



D-Separation

D

B C

A

E F

Case #1: Head to Tail

P(A,B,E) = P(A)P(B | A)P(E | B) )

P(A,E | B) =
P(A)P(B | A)P(E | B)

P(B)

=
P(A,B)

P(B)
P(E | A)

= P(A | B)P(E | B)

A ?? E | B



D-Separation

D

B C

A

E F

Case #2: Tail to Tail

P(C,E, F ) = P(C)P(E | C)P(F | C) )

P(E,F | C) =
P(C)P(E | C)P(F | C)

P(C)

= P(E | C)P(F | C)

E ?? F | C



D-Separation

D

B C

A

E F

Case #3: Head to Head

P(A,C,D) = P(A)P(D)P(C | A,D) )

P(A,D | C) =
P(A)P(D)P(C | A,D)

P(C)

= P(A,D | C)

A 6?? D | C
Explaining Away: Given that the motion alarm went off, if we 

learn that a burglar broke in, then we know 
that it’s unlikely an earthquake happened 
The burglary event “explains away” the 
earthquake event

A: Earthquake 
B: Break-in 
C: Motion alarm

Also known as colliders



D-Separation through Bayes Ball
This might be a little complicated to remember and 
apply, so let’s look at an easier way to work out d-
separation



D-Separation through Bayes Ball
Imagine a ball, Bayes ball. This ball is allowed to 
“travel” on our model, but only in certain allowed ways:

Two variables are 
conditionally independent 
when Bayes ball cannot 
travel from one to the other



D-Separation through Bayes Ball
Imagine a ball, Bayes ball. This ball is allowed to 
“travel” on our model, but only in certain allowed ways:

Case #1: Head to Tail

Case #2: Tail to Tail

Case #3: Head to Head



Back to our Example

D

B C

A

E F

Is B independent of D given C?



Back to our Example

D

B C

A

E F

Is B independent of D given C?

The blue arrows correspond to the ball path



Back to our Example

D

B C

A

E F

Is B independent of D given C?

The blue arrows correspond to the ball path

Bayes ball could 
reach D from B 

and thus the 
answer is NO



Back to our Example

D

B C

A

E F

Is F independent of D given C?

The blue arrows correspond to the ball path



Back to our Example

D

B C
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E F

Is F independent of D given C?

The blue arrows correspond to the ball path



Back to our Example

D

B C

A

E F

Is F independent of D given C?

The blue arrows correspond to the ball path



Back to our Example

D

B C

A

E F

Is F independent of D given C?

The blue arrows correspond to the ball path

Bayes ball got 
stuck going from 
D from F and thus 
the answer is YES



A More Complicated Example
Where can Bayes ball not go to, starting from the 
dashed variable?



A More Complicated Example
Where can Bayes ball not go to, starting from the 
dashed variable?

Here



Markov Blanket



Markov Blanket
A variable is independent of every other variable in the 
model, given its parents, its children, and its children's 
parents

That is called the Markov blanket of a variable

Bayes ball 
is stuck!!!



Dependencies…so what?

We talked so much about understanding when 
there are dependencies/independencies 

between variables and how to model them, but 
why are they important?



Graphical Model Problems

Inference Learning

StructureParameters

Very related since we often 
infer probability distributions 

over parameter values

Hard



Inference in Graphical Models
Probability of joint assignment over all n variables is 
easy — we just have to lookup the conditional 
probability tables (O(n) complexity)

Conditional independencies help us “move those sums 
around” and reduce complexity

Marginal probability distribution of a single variable is 
generally hard — we need to sum over all possible 
assignments to the rest of the variables (          
complexity)

M(Xi) =
X

X12D1

· · ·
X

Xi�12Di�1

X

Xi+12Di+1

· · ·
X

Xn2Dn

P(X1, . . . , Xn)

O(|D|n)



Marginal Example
Linear Chain

A B C D

P(A,B,C,D) = P(A)P(B | A)P(C | B)P(D | C)



Marginal Example
Linear Chain

A B C D

P(A,B,C,D) = P(A)P(B | A)P(C | B)P(D | C)

M(A) = P(A)
X

B2Val(B)

P(B | A)
X

C2Val(C)

P(C | B)
X

D2Val(D)

P(D | C)

Each step costs        operations and so the complexity is 
now quadratic: 

|D|2

O(n|D|2)



Learning in Graphical Models

Fully Observed 
Variables

Partially Observed 
Variables

Known Structure Easy Interesting 
Frequent

Unknown Structure Doable Hard



Learning in Graphical Models
We want to estimate the model parameters for a known 
structure and with fully observed data

D

B C

A

E F

Let P(E = e | B = b, C = c) , ✓e|b,c

logP(D | ✓) =
KX

k=1

logP(ak) + logP(bk | ak)

+ logP(dk) + logP(ck | ak, dk)
+ logP(ek | bk, ck) + logP(fk | ck)

@ logP(D | ✓)
@✓e|b,c

= 0 )

ˆ✓e|b,c =

PK
k=1 1ek=e^bk=b^ck=cPK

k=1 1bk=b^ck=c

Easy



Learning in Graphical Models
We now want to estimate the model parameters for a 
known structure and with partially observed data

D

B C

A

E F

Before
✓  argmax

✓
logP(A,B,C,D,E, F | ✓)

Now
✓  argmax

✓
EC|A,D{logP(A,B,C,D,E, F | ✓}

Expectation-Maximization (EM) Algorithm



EM Algorithm
We begin with an arbitrary choice for our parameters and 
iterate over the following steps, until convergence

D

B C

A

E F

E Step: Estimate the values of the 
unobserved variables using the 
current parameters

M Step: Use the observed 
variables along with our estimates 
of the unobserved variables from 
the previous E step to compute a 
maximum likelihood estimate for 
our parameters and update them

Guaranteed to find 
a local maximum



EM Algorithm
We begin with an arbitrary choice for our parameters and 
iterate over the following steps, until convergence

D

B C

A

E F

Guaranteed to find 
a local maximum

M Step

✓̂c|a,d =

PK
k=1 1ck=1^ck=c^dk=dE{C | A = ak, D = dk}PK

k=1 1ak=a^dk=d

=

PK
k=1 1ck=1^ck=c^dk=d✓C=1|a,d

PK
k=1 1ak=a^dk=d

E Step
E{C | A = a,D = d} = P(C = 1 | A = a,D = d)

= ✓C=1|a,d



EM Algorithm
In the simple discrete variable case, we do the same 
thing as in maximum likelihood estimation, but we 
simply replace each unobserved variable count by its 
expected count

EM is not exact, but why 
is it guaranteed to find a 

local maximum?



EM Algorithm
Intuition: The following holds for any distribution

L(q, ✓) =
X

Z

q(Z) log

p(X,Z | ✓)
q(Z)

KL(q || p) = �
X

Z

q(Z) log

p(Z | X, ✓)

q(Z)

q(Z)

KL Divergence
(non-negative 

 from homework)

X : observed variables
Z : unobserved variables

log p(X | ✓) = L(q, ✓) + KL(q || p)



L(q, ✓) =
X

Z

q(Z) log

p(X,Z | ✓)
q(Z)

 log p(X | ✓)

log p(X | ✓) = L(q, ✓) + KL(q || p)

EM Algorithm
Intuition: The following holds for any distribution q(Z)

L(q, ✓)

KL(q || p)

log p(X | ✓)

Visualization idea borrowed from Chris Bishop’s book



EM Algorithm
E Step Intuition: We maximize                while holding          
       fixed. We thus set

q(Z) = p(Z | X, ✓old)

L(q, ✓old)
✓old

KL(q || p) = 0

L(q, ✓old)

log p(X | ✓)

Remember that log p(X | ✓) = L(q, ✓) + KL(q || p)



EM Algorithm

log p(X | ✓new)

L(q, ✓new)

KL(q || p)

M Step Intuition: We maximize the lower bound with 
respect to    while holding         fixed✓ q(Z)



Markov Chain Monte Carlo (MCMC)
Conditional probability distributions when dealing with 
a known structure and partially observed variables 
can be computed using sampling — Markov Chain 
Monte Carlo (MCMC) methods are often used 

Gibbs sampling is a very common such method

• Initialize unobserved variables to some values 
• Sample each unobserved variable in sequence, while 

fixing the rest to their last sampled value 
• Burn (i.e., throw away) the first few samples and then 

thin the rest (e.g., keep every 10th sample)

The distribution of the samples converges to the true 
posterior distribution of the unobserved variables



Bayesian Network Structure Learning
Learning structure is not that easy 

But there exist some algorithms for certain special cases

• In general requires lots of data (can overfit easily) 
• Huge search space — we use priors to constrain it

e.g., Chow-Liu for tree structures

Next time
Finds the tree structure that 
minimizes KL divergence 
(i.e., mutual information)



Questions?


