
Competence-based Curriculum Learning
for Neural Machine Transla:on

Anthony Platanios
e.a.platanios@cs.cmu.edu

Joint work with O,lia Stretcu, Graham Neubig,
Barnabas Poczos, and Tom Mitchell

mailto:e.a.platanios@cs.cmu.edu

Neural Machine Transla/on (NMT)

• NMT represents the state-of-the-art for many machine transla/on systems.
• NMT benefits from end-to-end training with large amounts of data.
• Large scale NMT systems are o?en hard to train:

- Transformers rely on a number of heuris/cs such as specialized learning
rate schedules and large-batch training.

!2

[Popel 2018]

Curriculum Learning

Curriculum Learning

!3

Training Time

Easy

Thank you!

Hard
Thank you, for being so pa:ent today
and coming to this talk even though

you’re probably :red!
Training Example Thank you, for being so pa:ent!

Medium

Curriculum Learning

!4

Training Time

Easy Hard

Thank you! Thank you, for being so pa:ent!
Thank you, for being so pa:ent today
and coming to this talk even though

you’re probably :red!
Training Example

Medium

Curriculum Learning

!5

Avoid geEng stuck in bad local op/ma early on!

- [Elman 1993]: Introduced the idea of curriculum learning.
- [Kocmi 2017, Bojar 2017]: Empirical evalua/on on MT. Final performance is hurt.
- [Zhang 2018]: Data binning strategy. The results are highly sensi/ve on several hyperparameters.

Discrete
regimes.

Improvements in
training Bme!

No improvements in
performance!

Training Time

Easy Hard

Thank you! Thank you, for being so pa:ent!
Thank you, for being so pa:ent today
and coming to this talk even though

you’re probably :red!
Training Example

Medium

Our Approach

!6

• Difficulty: Represents the difficulty of a training example that may depend on
the current state of the learner.

(e.g., sentence length)

Training Example

We introduce two key concepts:

Training Step

(e.g., valida/on set performance)

• Competence: Value between 0 and 1 that represents the progress of a
learner during its training and can depend on the learner’s state.

Our Approach

!7

The training examples are ranked according to their difficulty and the learner is
only allowed to use the top por/on of them at /me .

CURRICULUM LEARNING

DIFFICULTY

Use sample only if:
difficulty(sample) ≤ competence(model)

COMPETENCE

MODELTRAINER
DATA

SA
M
PL
E

M
O
D
EL
STATE

Our Approach

!8

The training examples are ranked according to their difficulty and the learner is
only allowed to use the top por/on of them at /me .

CURRICULUM LEARNING

DIFFICULTY

Use sample only if:
difficulty(sample) ≤ competence(model)

COMPETENCE

MODELTRAINER
DATA

SA
M
PL
E

M
O
D
EL
STATE

CURRICULUM LEARNING

DIFFICULTY

Use sample only if:
difficulty(sample) ≤ competence(model)

COMPETENCE

MODELTRAINER
DATA

SA
M
PL
E

M
O
D
EL
STATE

Our Approach

!9

The training examples are ranked according to their difficulty and the learner is
only allowed to use the top por/on of them at /me .

Our Approach — Algorithm

!10

1. Compute the difficulty for each .

Our Approach — Algorithm

!11

1. Compute the difficulty for each .

2. Compute the cumula:ve density func:on (CDF), , of the difficul/es.

Thank you very much! 4
Barack Obama loves ... 13
My name is ... 6
What did she say ... 123

Sentence Length

Thank you very much! 0.01
Barack Obama loves ... 0.15
My name is ... 0.03
What did she say ... 0.95

Sentence Difficulty

Our Approach — Algorithm

!12

1. Compute the difficulty for each .

2. Compute the cumula:ve density func:on (CDF), , of the difficul/es.

Thank you very much! 4
Barack Obama loves ... 13
My name is ... 6
What did she say ... 123

Sentence Length

Thank you very much! 0.01
Barack Obama loves ... 0.15
My name is ... 0.03
What did she say ... 0.95

Sentence Difficulty

Our Approach — Algorithm

!13

1. Compute the difficulty for each .

2. Compute the cumula:ve density func:on (CDF), , of the difficul/es.

0.5

Thank you very much! 4
Barack Obama loves ... 13
My name is ... 6
What did she say ... 123

Sentence Length

Thank you very much! 0.01
Barack Obama loves ... 0.15
My name is ... 0.03
What did she say ... 0.95

Sentence Difficulty

Our Approach — Algorithm

!14

1. Compute the difficulty for each .

2. Compute the cumula:ve density func:on (CDF), , of the difficul/es.

50% shortest sentences

Our Approach — Algorithm

!15

1. Compute the difficulty for each .

2. Compute the cumula:ve density func:on (CDF), , of the difficul/es.

3. For training step = 1, … :

i. Compute the model competence .

Our Approach — Algorithm

!16

1. Compute the difficulty for each .

2. Compute the cumula:ve density func:on (CDF), , of the difficul/es.

3. For training step = 1, … :

i. Compute the model competence .

ii. Sample a data batch uniformly from all examples such that:

Our Approach — Algorithm

!17

1. Compute the difficulty for each .

2. Compute the cumula:ve density func:on (CDF), , of the difficul/es.

3. For training step = 1, … :

i. Compute the model competence .

ii. Sample a data batch uniformly from all examples such that:

iii. Invoke the model trainer using the sampled batch.

Our Approach — Algorithm

!18

1. Compute the difficulty for each .

2. Compute the cumula:ve density func:on (CDF), , of the difficul/es.

3. For training step = 1, … :

i. Compute the model competence .

ii. Sample a data batch uniformly from all examples such that:

iii. Invoke the model trainer using the sampled batch.

We are not changing the rela:ve probability of each training example under the input
data distribu:on. We are constraining the domain of that distribu:on.

Our Approach — Algorithm

!19

Difficulty
Step 1000

Competence

Competence at current stepSample uniformly from
blue region

Step 10000

Our Approach — Difficulty

!20

We denote our training corpus as a collec:on of sentences, , where
each sentence is a sequence of words: .

• Sentence Length:

• Word Rarity:

Our Approach — Competence

!21

a value in [0, 1] that represents the progress of a learner during its training.
propor/on of training data the learner is allowed to use at step .

Our Approach — Competence

!22

a value in [0, 1] that represents the progress of a learner during its training.
propor/on of training data the learner is allowed to use at step .

Linear Competence

0 200 400 600 800 1000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
m
pe
te
nc
e

ini/al
competence

/me a?er which the 
learner is fully competent

Our Approach — Competence

!23

a value in [0, 1] that represents the progress of a learner during its training.
propor/on of training data the learner is allowed to use at step .

Learner-Dependent Competence

E.g., valida:on set performance. Too Expensive!

Our Approach — Competence

!24

a value in [0, 1] that represents the progress of a learner during its training.
propor/on of training data the learner is allowed to use at step .

Root Competence

Keep the rate in which new examples come in,
inversely propor:onal to the training data size:

0 200 400 600 800 1000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
m
pe
te
nc
e

clinear
csqrt
croot-3
croot-5
croot-10

0 200 400 600 800 1000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
m
pe
te
nc
e

clinear
csqrt
croot-3
croot-5
croot-10

Our Approach — Competence

!25

a value in [0, 1] that represents the progress of a learner during its training.
propor/on of training data the learner is allowed to use at step .

Root Competence

Keep the rate in which new examples come in,
inversely propor:onal to the training data size:

0 200 400 600 800 1000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
m
pe
te
nc
e

clinear
csqrt
croot-3
croot-5
croot-10

0 200 400 600 800 1000
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
m
pe
te
nc
e

clinear
csqrt
croot-3
croot-5
croot-10

Our Approach

!26

The training examples are ranked according to their difficulty and the learner is
only allowed to use the top por/on of them at /me .

CURRICULUM LEARNING

DIFFICULTY

Use sample only if:
difficulty(sample) ≤ competence(model)

COMPETENCE

MODELTRAINER
DATA

SA
M
PL
E

M
O
D
EL
STATE

DIFFICULTY
- Sentence Length
- Word Rarity

COMPETENCE
- Linear
- Root

Experiments — Datasets

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

NAACL-HLT 2019 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Figure 4: Plots of various competence functions with
c0 = 0.01 (initial competence value) and T = 1, 000
(total duration of the curriculum learning phase).

P = (1� c20)/2T , where T denotes the time after
which the learner is fully competent. This, along
with the constraint that c(t) 2 [0, 1] for all t � 0,
results in the following definition:

csqrt(t) , min

1,

r
t
1� c20
T

+ c20

!
. (7)

If we want to make the curve sharper, meaning
that even more time is spent per sample added later
on in training, then we can consider the following
more general form, for p � 1:

cexp-p(t) , min

1,

p

r
t
1� cp0
T

+ cp0

!
. (8)

We observed that best performance is obtained
when p = 2 and then, as we increase p, perfor-
mance converges to that obtained when training
without a curriculum. Plots of the competence
functions we presented are shown in Figure 4.

2.3 Scalability
Our method can be easily used in large-scale NMT
systems. This is because it mainly consists of a
preprocessing step of the training data that com-
putes the difficulty scores. The implementation we
are releasing with this paper computes these scores
in an efficient manner by building a graph describ-
ing their dependencies, as well as whether they
are sentence-level scores (e.g., sentence length),
or corpus-level (e.g., CDF), and using that graph
to optimize their execution. Using only 8GB of
memory, we can process up to 20k sentences per
second when computing sentence rarity scores,
and up to 150k sentences per second when com-
puting sentence length scores.

3 Experiments
For our experiments, we use three of the most
commonly used datasets in NMT, that range from

Dataset # Train # Dev # Test
IWSLT-15 En)Vi 133k 768 1268
IWSLT-16 Fr)En 224k 1080 1133

WMT-16 En)De 4.5m 3003 2999

Table 1: Number of parallel sentences in each dataset.
“k” stands for “thousand” and “m” stands for “million”.

a small benchmark dataset to a large-scale dataset
with millions of sentences. Statistics about the
datasets are shown in Table 1. We perform experi-
ments using both RNNs and Transformers. For the
RNN experiments we use a bidirectional LSTM
for the encoder, and an LSTM with the attention
model of Bahdanau et al. (2015) for the decoder.
The number of layers of the encoder and the de-
coder are equal. We use a 2-layer encoder and
a 2-layer decoder for all experiments on IWSLT
datasets, and a 4-layer encoder and a 4-layer de-
coder for all experiments on the WMT dataset, due
to the dataset’s significantly larger size. For the
Transformer experiments we use the BASE model
proposed by Vaswani et al. (2017). It consists of
a 6-layer encoder and decoder, using 8 attention
heads, and 2,048 units for the feed-forward layers.
The multi-head attention keys and values depth is
set to the word embedding size. The word embed-
ding size is 512 for all experiments.

During training, we use a label smoothing fac-
tor of 0.1 (Wu et al., 2016) and the AMSGrad op-
timizer (Reddi et al., 2018) with its default param-
eters in TensorFlow, and a batch size of 5, 120 to-
kens (due to GPU memory constraints). During
inference, we employ beam search with a beam
size of 10 and the length normalization scheme of
(Wu et al., 2016).1

Curriculum Hyperparameters. We set the ini-
tial competence c0 to 0.01, in all experiments.
This means that all models start training using
the 1% easiest training examples. The curriculum
length T is effectively the only hyperparameter
that we need to set for our curriculum methods. In
each experiment, we set T in the following man-
ner: we train the baseline model without using any
curriculum and we compute the number of training
steps it takes to reach approximately 90% of its fi-
nal BLEU score. We then set T to this value. This
results in T being set to 5, 000 for the RNN ex-

1We emphasize that we did not run experiments with other
architectures or configurations, and thus our baselines archi-
tectures were not chosen because they were favorable to our
method, but rather because they were frequently mentioned
in existing literature.

!27

‣ RNN:
- 2-layer bidirec/onal LSTM encoder / 2-layer decoder (4 layers for WMT).
- 512 hidden units per layer and word embedding size

‣ Transformer:
- 6-layer encoder/decoder.
- 2,048 units for the feed-forward layers and 512 word embedding size.

‣ AMSGrad op/mizer (similar to Adam) with learning rate 0.001
‣ Label smoothing factor = 0.1
‣ Batch size = 5,120 tokens (i.e., 256 for sentence length 20)
‣ Beam width = 10 (using GNMT length normaliza/on)
‣ BPE vocabulary with 32,000 merge opera/ons

Experiments — Setup

!28

Experiments — Setup

Ini:al Competence: All models start training using the 1%
easiest training examples.

We train the baseline model without using
any curriculum, and compute the number of
training steps it takes to reach ~90% of its
final BLEU score.

Curriculum Length:

!29

Experiments — Results

0 5000 10000
Step

15

20

25

30

B
L
E
U 26.00

27.50

RNN

0 50000 100000
Step

15

20

25

30

28.00

30.00
Transformer

Plain SL Linear SL Sqrt SR Linear SR Sqrt

IWSLT15 : En! Vi

!30

Experiments — Results

0 5000 10000
Step

15

20

25

30

B
L
E
U 26.00

27.50

RNN

0 50000 100000
Step

15

20

25

30

28.00

30.00
Transformer

Plain SL Linear SL Sqrt SR Linear SR Sqrt

IWSLT15 : En! Vi

0 10000 20000
Step

20

25

30

35

B
L
E
U 31.00

32.00

RNN

0 50000 100000
Step

20

25

30

35
34.00

36.00
Transformer

IWSLT16 : Fr! En

!31

Experiments — Results

0 100000
Step

15

20

25

30

B
L
E
U 25.50

26.50

RNN

0 100000 200000
Step

15

20

25

30

28.00

30.00
Transformer

WMT16 : En! De

0 5000 10000
Step

15

20

25

30

B
L
E
U 26.00

27.50

RNN

0 50000 100000
Step

15

20

25

30

28.00

30.00
Transformer

Plain SL Linear SL Sqrt SR Linear SR Sqrt

IWSLT15 : En! Vi

!32

Experiments — Results
Rela%ve Time to Baseline Performance

IWSLT15: En → Vi

Transformer

!33

Experiments — Results
RN

N

IWSLT15: En → Vi IWSLT16: En → De WMT16: En → De

Rela%ve Time to Baseline Performance
Tr

an
sf

or
m

er

!34

Conclusion — Our Approach

!35

We propose a con/nuous curriculum learning regime (i.e., no binning), that is:

• Abstract & Extensible: Is a generaliza/on of mul/ple exis/ng approaches.

• Simple: Can be applied to exis/ng NMT systems with only a small
modifica/on to their training data pipelines.

• Automa:c: Has no hyper-parameters other than the curriculum length.

• Efficient: Reduces training /me by up to 70%, while improving performance
by up to 2.2 BLEU.

Also, we perform experiments on both RNNs and Transformers.

Prior work has not evaluated curriculum
learning applied to Transformers.

Thank You!

Ques:ons?

e.a.platanios@cs.cmu.edu

mailto:e.a.platanios@cs.cmu.edu

