

Competence-based Curriculum Learning for Neural Machine Translation

Otilia Stretcu ostretcu@cs.cmu.edu

Graham Neubig gneubig@cs.cmu.edu

Barnabas Poczos bapoczos@cs.cmu.edu

Tom M. Mitchell tom.mitchell@cs.cmu.edu

Carnegie Mellon

University

Motivation

MACHINE TRANSLATION Translate from one language to another: English Romanian **MT System** How are you? Ce mai faci? Large scale neural MT systems are hard to train. For example, Transformers require: **Specialized Learning** $\ln(t) \triangleq d_{\text{embedding}}^{-0.5} \min\left(t^{-0.5}, t \cdot T_{\text{warmup}}^{-1.5}\right)$ Large Batch Training **Rate Schedules**

	NG	
Easy	Medium	Hard
Training Example Thank you!	Thank you, for being so patient!	Thank you, for being so patient today and coming to this talk even though you're probably tired!
Training Time		
Previous curriculum learning	g approaches for NMT:	
Discrete Regimes	Improvements in Training Time	No Improvements in Performance

Proposed Approach

DIFFICULTY

CURRICULUM LEARNING COMPETENCE MODEL difficulty(sample) ≤ competence(model) STATE **MODEL TRAINER**

COMPETENCE

c(t)

Value between 0 and 1 that represents the progress of a learner during its training and can depend on the learner's state:

(e.g., validation set performance)

Linear Competence

New training examples are constantly being introduced during the training process with a constant rate $r = (1 - c_0)/T$, as a proportion of the total number of available training examples:

- 1. Compute the difficulty $d(s_i)$ for each sentence s_i . 2. Compute the cumulative density function (CDF),
- - Compute the model competence
 - Sample a data batch uniformly from all examples
 - iii. Invoke the model trainer using the sampled batch.

Experiments

