Otilia Stretcu
ostretcu@cs.cmu.edu

Graham Neubig
gneubig@cs.cmu.edu

Barnabas Poczos
bapoczos@cs.cmu.edu

Tom M. Mitchell
tom.mitchell@cs.cmu.edu

Motivation

MACHINE TRANSLATION
Translate from one language to another:
English
How are you?

Large scale neural MT systems are hard to train. For example, Transformers require:

```
Large Batch Training
```

CURRICULUM LEARNING

Easy	Medium	Hard		
Training Example	Thank you!	Thank you, for being so patient!		Thank you, for being so patient
:---:				
today and coming to this talk even				
though you're probably tired!				

Previous curriculum learning approaches for NMT

No Improvements in
Performance

Proposed Approach

DIFFICULTY
 Represents the difficulty of a training example

 that may depend on the state of the learner:

ALGORITHM

1. Compute the difficulty $d\left(s_{i}\right)$ for each sentence $s i$.
2. Compute the cumulative density function (CDF),
$\bar{d}\left(s_{i}\right) \in[0,1]$ of the difficulties.
3. For training step $t=1$,
i. Compute the model competence
ii. Sample a data batch uniformly from all examples such that: $\bar{d}\left(s_{i}\right) \leq c(t)$.
iii. Invoke the model trainer using the sampled batch.

COMPETENCE

Value between 0 and 1 that represents the progress of a learner during its training and can depend on the learner's state:

Linear Competence

Square Root Competence
Keep the rate in which new examples come in,
inversely proportional to the training data size:
$\frac{d c(t)}{d t}=\frac{P}{c(t)} \rightarrow c_{\mathrm{sqrt}}(t) \triangleq \min \left(1, \sqrt{t \frac{1-c_{0}^{2}}{T}+c_{0}^{2}}\right)$

Experiments

DATASETS

- IWSLT-15 (En \rightarrow Vi)
- IWSLT-16 ($\mathrm{Fr} \rightarrow$ En)
-WMT-16 (En \rightarrow De)
MODELS
- RNN:
- Bidirectional LSTM encoder

LSTM decoder

- BPE vocabulary
- Transformer:
- Base model of

BPE vocabulary Vaswani et al.

PARAMETERS

- Initial Competence: 0.01

Curriculum Length:
We train the baseline model without any curriculum, and compute the number of training steps it takes to reach $\sim 90 \%$ of its final BLEU score.

CODE

Scala MT library to reproduce experiments:
TensorFlow Scala used for our experiments:
TensorFlow Scala used for our experiments:

RELATIVE TIME TO BASELINE PERFORMANCE

