
Passage #2
...Harry had heard Fred and
George Wesley complain...
...5 3 5 4 3 6 7 8...
...NNPVBD VBN NNP CC NNP NNPVB...

MADerror rank→Measures the
correctness of the ranking of the
classifiers based on correctness
MADerror→Measures the
correctness of the error rate
es�mates of the classifiers
AUCtarget→Measures the
accuracy of the final predic�ons.

We also outperform the state-of-the-art in the unconstrained datasets
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Passage #1
...They were hoping for a reason
to fight Malfoy...
...4 4 6 3 1 6 2 5 6...
...PRP VBD VBG IN DT NN TO VB NNP...

1. Never-Ending Language Learning (NELL)
Task: Predict whether a noun phrase (NP) represents a concept (e.g., "city").
Classifiers: 6 logis�c regression classifiers using different features.
Constraints:

Size: 553,940 NPs | 11 concepts or 7 concepts (leafs of the above tree)
We also experimented with an unconstrained version, called "uNELL", which contained
20,000 NPs per concept, 15 concepts, and 4 classifiers. This is so we can compare our results
to those of previous work.

2. Neuroscience
Task: Predict which of two 40 second long story passages corresponds to an unlabeled 40
second �me series of fMRI neural ac�vity.
Classifiers: 8 classifiers using different text features.
Size: 1,000 samples
for 11 brain regions

- Number of le�ers per word
- Parts of speech
- ...

Which passage corresponds
to this fMRI recording?

Animal Loca�on

City Country River LakeBird Fish Mammal Arthropod Mollusk

Vertebrate Invertebrate

DATASETS

Experiments

1%
2%
9%

Is animal?
Is fish?
Is bird?Sp

ar
ro
w

1%
5%
57%

Is animal?
Is fish?
Is bird?

PREDICTIONS
Sh
ar
k

1%
2%
9%

Is animal?
Is fish?
Is bird?Cl

as
si
fie
r2

1%
5%
57%

Is animal?
Is fish?
Is bird?

ERROR RATES

Cl
as
si
fie
r1

RESULTS PROBABILISTIC INFERENCE

Inputs: Ground predicates and rules

Step 1: Create a Markov Random Field (MRF)
Step 2: Perform probabilis�c inference to obtain the most likely values for the
unobserved ground predicates. Inference is performed using a modified version of the
Probabilis�c So� Logic (PSL) framework that uses a custom stochas�c version of the
consensus Alterna�ng Direc�on Method of Mul�pliers (ADMM).

GROUND RULES

Observed Unobserved

GROUND PREDICATES

Error rates of
classifier 1 for
various
concepts

Final
(combined)
predic�ons
aggregated
across
classifiers

GROUNDING

Inputs: Predicted probability for
each classifier-sample-concept

Outputs: Set of sample-concept
classifica�on pairs and
concept-classifier error-rate pairs
that are not directly constrained
to be 0 or 1 from the constraints

LOGICAL CONSTRAINTS
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"Shark"

CLASSIFIER OUTPUTS

Approach

LOGICAL RULES

Is bird? Is animal?
SUBSUMPTION

If something is a bird it
must also be an animal

Is fish?Is bird?

The func�on outputs may be constrained:

Can we use this informa�on to be�er predict the accuracy of the
classifiers?
Intui�ve example:
If classifier 1 says that X is a bird and classifier 2 says that X is a
fish, then at least one of them must be wrong

LOGICAL CONSTRAINTS

MUTUAL EXCLUSION

If something is a bird it
cannot also be a fish

Instead, we have a set of approxima�ons (i.e., classifiers) to those
func�ons and we want to know how accurate they are:
- Using orthographic features (e.g., ends with "-burgh")
- Using the context (e.g., appears a�er "lives in")
- . . .

"Pi�sburgh"
Is city?

Is fish?

Is bird?

There exist binary func�ons that we do not know:

Does this
implica�on hold?

If yes, under what
condi�ons?

Correctness

Consistency
Using unlabeled data we can measure consistency but
not correctness
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A Probabilis�c Logic Approach
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SETTING

RESULTS

Ensemble Iden�fiability Mutual Exclusion

Subsump�on

Needed because replacing all error rates with 1 minus their value would result
in the ensemble rules s�ll being sa�sfied
Intui�vely: If two approxima�ons produce the same predic�on, then that
predic�on is more likely to be correct → consistency implies correctness


