

Estimating Accuracy from Unlabeled Data A Probabilistic Logic Approach

Emmanouil Antonios Platanios

e.a.platanios@cs.cmu.edu

ERROR RATES				PRE		
	Is animal?	1%		ls ar		
	ls fish?	5%	shark	Is fis		
	Is bird?	57%	0)	ls bi		
	Is animal?	1%	2	ls ar		
	ls fish?	2%	arro	Is fis		
	Is bird?	9%	Sp	ls bi		

PREDICTIONS				
	Is animal?	1%		
shark	ls fish?	5%		
0)	Is bird?	57%		
\$	Is animal?	1%		
arro	ls fish?	2%		
Sp	Is bird?	9%		

Hoifung Poon

hoifung@microsoft.com

Inputs: Predicted probability for each classifier-sample-concept

Outputs: Set of *sample-concept* classification pairs and concept-classifier error-rate pairs that are not directly constrained to be 0 or 1 from the constraints

PROBABILISTIC INFERENCE

Inputs: Ground predicates and rules

Step 1: Create a Markov Random Field (MRF) Step 2: Perform probabilistic inference to obtain the most likely values for the unobserved ground predicates. Inference is performed using a modified version of the Probabilistic Soft Logic (PSL) framework that uses a custom stochastic version of the consensus Alternating Direction Method of Multipliers (ADMM).

Ensemble	Identifiability	Mutual Exclusion	Needed because re
$(X) \land \neg e_j^d \to f^d(X)$		$\operatorname{ME}(d_1, d_2) \wedge \hat{f}_j^{d_1}(X) \wedge f^{d_2}(X) \to e_j^{d_1}$	in the ensemble ru
$(\mathbf{X}) \land \neg e_j^d \to \neg f^d(\mathbf{X})$	$\hat{f}_j^d(X) \to f^d(X)$ $\neg \hat{f}^d(X) \to \neg f^d(X)$	Subsumption	Intuitively: If two a
$(X) \land e_j^d \to f^d(X)$ $(X) \land e_j^d \to f^d(X)$	$J_j(\mathbf{X}) \rightarrow J_j(\mathbf{X})$	$\operatorname{SUB}(d_1, d_2) \land \neg \widehat{f}_j^{d_1}(X) \land f^{d_2}(X) \to e_j^{d_1}$	prediction is more

Tom Mitchell

tom.mitchell@cs.cmu.edu

Eric Horvitz horvitz@microsoft.com

Experiments

DATASETS	

Constraints:

We also experimented with an unconstrained version, called "uNELL", which contained 20,000 NPs per concept, 15 concepts, and 4 classifiers. This is so we can compare our results to those of previous work.

2. Neuroscience

Size: 1,000 sa for **11 brain**

- Number of let

- Parts of speec

Which passage corresponds to this fMRI recording?

RESULTS

 $MAD_{error rank} \rightarrow Mea$ correctness of the classifiers based or $MAD_{error} \rightarrow Measu$ correctness of the estimates of the cl

 $AUC_{target} \rightarrow Measu$ accuracy of the fir

GROUND RULES

 $\text{SUB}(\texttt{animal},\texttt{fish}) \land \neg \hat{f}_1^{\texttt{animal}}(\textit{shark}) \land f^{\texttt{fish}}(\textit{shark}) \rightarrow e_1^{\texttt{animal}}$

 $\mathrm{ME}(\texttt{fish},\texttt{bird}) \land \hat{f}_1^{\texttt{fish}}(sparrow) \land f^{\texttt{bird}}(sparrow) \rightarrow e_1^{\texttt{fish}}$

replacing all error rates with 1 minus their value would result les still being satisfied

approximations produce the same prediction, then that e likely to be correct \rightarrow consistency implies correctness

1. Never-Ending Language Learning (NELL)

Task: Predict whether a noun phrase (NP) represents a concept (e.g., "city").

Classifiers: 6 logistic regression classifiers using different features.

Task: Predict which of two 40 second long story passages corresponds to an unlabeled 40 second time series of fMRI neural activity.

Classifiers: 8 classifiers using different text features.

Passage #1	Passage #2
They were hoping for a reason	Harry had heard Fred and
to fight Malfoy	George Wesley complain
446316256	53543678
PRP VBD VBG IN DT NN TO VB NNP	NNP VBD VBN NNP CC NNP NNP VB
	Passage #1 They were hoping for a reason to fight Malfoy 4 4 6 3 1 6 2 5 6 PRP VBD VBG IN DT NN TO VB NNP

easures the		MAD _{error rank}	MAD _{error}	AUC	MAD _{error rank}	MAD _{error}	AUC
e ranking of the	MAJ	7.71	0.238	0.372	7.54	0.303	0.447
on correctness	AR-2	12.0	0.261	0.378	10.8	0.350	0.455
ures the	AR	11.4	0.260	0.374	11.1	0.350	0.477
e error rate	BEE	6.00	0.231	0.314	5.69	0.291	0.368
lassifiers	CBEE	6.00	0.232	0.314	5.69	0.291	0.368
ures the	HCBEE	5.03	0.229	0.452	5.14	0.324	0.462
nal predictions.	LEE	3.71	0.152	0.508	4.77	0.180	0.615

We also outperform the state-of-the-art in the unconstrained datasets