Estimating Accuracy from Unlabeled Data A Bayesian Approach

Anthony Platanios, Avinava Dubey, and Tom Mitchell

Machine Learning Department Carnegie Mellon University

Presented by Anthony Platanios

Using only unlabeled data we can measure

consistency

but not

correctness

Is quantum physics probabilistic?

Independent Groups of Scientists

Planck

Cramer

Heisenberg

Feynman

4

Why only unlabeled data?

It is often **impossible** to have enough labeled data!

Never Ending Language Learning (NELL):

- 1. Huge knowledge-base with thousands of functions
- 2. Refined **daily** over **several years**
- 3. Constantly creating **new functions** automatically

Definition

consistency

Agreement Rate: The probability over $\mathbb{P}(\mathcal{X}) = \mathcal{D}$ of two function outputs agreeing.

$$a_{\{i,j\}} = \mathbb{P}_{\mathcal{D}}\left(\hat{f}_i\left(X\right) = \hat{f}_j\left(X\right)\right)$$

Definition

consistency

Given unlabeled input data, X_1, \ldots, X_S , we observe the sample agreement rates:

$$\hat{a}_{\{i,j\}} = \frac{1}{S} \sum_{s=1}^{S} \mathbb{I}\left\{\hat{f}_{i}\left(X_{s}\right) = \hat{f}_{j}\left(X_{s}\right)\right\}$$

Definition

correctness

Error Rate: The probability over $\mathbb{P}(\mathcal{X}) = \mathcal{D}$ of disagreeing with the correct output label.

$$e_i = \mathbb{P}_{\mathcal{D}}\left(f_i(X) \neq Y\right)$$

Error Estimation

We designed a **generative process** describing how our observations are generated.

Error Estimation

Label Prior $\checkmark p \sim \text{Beta}(\alpha_p, \beta_p),$ True Labels $\checkmark \ell_i \sim \text{Bernoulli}(p), \text{ for } i = 1, \dots, S,$ Error Rates $\bigstar e_j \sim \text{Beta}(\alpha_e, \beta_e), \text{ for } j = 1, \dots, N,$ Actual Outputs $\bigstar \hat{f}_{ij} = \begin{cases} \ell_i & , \text{ with probability } 1 - e_j, \\ 1 - \ell_i & , \text{ otherwise.} \end{cases}$

Error Estimation

We use **Gibbs sampling** to perform inference:

$$P(p \mid \cdot) = \text{Beta}(\alpha_p + \sigma_{\ell}, \beta_p + S - \sigma_{\ell}),$$

$$P(\ell_i \mid \cdot) \propto p^{\ell_i} (1 - p)^{1 - \ell_i} \pi_i,$$

$$P(e_j \mid \cdot) = \text{Beta}(\alpha_e + \sigma_j, \beta_e + S - \sigma_j),$$

where:

Single Domain Settings So Far

What About Multiple Domains?

We have functions of the **same parametric form** using the same input data and features, answering **different questions**!

We could potentially gain by **sharing information** across those accuracy estimation problems.

We can cluster the functions across domains.

What About Multiple Domains?

Coupled Error Estimation

We could potentially gain by **sharing information** across those accuracy estimation problems.

We can cluster the functions across domains.

Coupled ErrorEstimation β_{e} ϕ_{l} ϕ_{e} <tr

Dirichlet process

clusters function error rates across domains $p^{d} \sim \text{Beta}(\alpha_{p}, \beta_{p}), \text{ for } d = 1, \dots, D,$ $\ell_{i}^{d} \sim \text{Bernoulli}(p^{d}), \text{ for } i = 1, \dots, S^{d}, \text{ and } d = 1, \dots, D,$ $[\phi_{l}]_{j} \sim \text{Beta}(\alpha_{e}, \beta_{e}), \text{ for } j = 1, \dots, N, \text{ and } l = 1, \dots, \infty,$ $z^{d} \sim \text{CRP}(\alpha), \text{ for } d = 1, \dots, D,$ $e_{j}^{d} = [\phi_{z^{d}}]_{j}, \text{ for } j = 1, \dots, N, \text{ and } d = 1, \dots, D,$ $\hat{f}_{ij}^{d} = \begin{cases} \ell_{i}^{d} & , \text{ with probability } 1 - e_{j}^{d}, \\ 1 - \ell_{i}^{d} & , \text{ otherwise.} \end{cases}$ β_{e}

 e_j

N

S

 $CRP(\alpha)$

 z^d

D

N

What About Multiple Domains?

Hierarchical Coupled Error Estimation

We can **further cluster error rates across functions** to share even more information in a structured manner.

Note that this sharing of information can in general be very **useful** in the case of **limited data**.

Hierarchical Coupled Error Estimation

 β_p

 α_p

 p^d

 ℓ_i^d

further clusters function error rates across classifiers

$$p^{d} \sim \text{Beta}(\alpha_{p}, \beta_{p}), \text{ for } d = 1, \dots, D,$$

$$\ell_{i}^{d} \sim \text{Bernoulli}(p^{d}), \text{ for } i = 1, \dots, S^{d}, \text{ and } d = 1, \dots, D,$$

$$\phi_{l} \sim \text{Beta}(\alpha_{e}, \beta_{e}), \text{ for } l = 1, \dots, \infty,$$

$$k_{m}^{d} \sim \text{CRP}(\gamma), \text{ for } d = 1, \dots, D, \text{ and } m = 1, \dots, \infty,$$

$$z_{j}^{d} \sim \text{CRP}^{d}(\alpha), \text{ for } d = 1, \dots, D, \text{ and } j = 1, \dots, N,$$

$$e_{j}^{d} = \phi_{k_{z_{j}^{d}}}, \text{ for } j = 1, \dots, N, \text{ and } d = 1, \dots, D,$$

$$\hat{f}_{ij}^{d} = \begin{cases} \ell_{i}^{d} &, \text{ with probability } 1 - e_{j}^{d}, \\ 1 - \ell_{i}^{d} &, \text{ otherwise.} \end{cases}$$

 $\operatorname{CRP}(\gamma)$

 k_m^d

 f_{ij}^d

 S^d

 ∞

 ∞

 e_j^d

 $\operatorname{CRP}^d(\alpha)$

 z_j^d

N

20

We report the error mean squared deviation (MSE_{error}) between:

- True error rates (estimated from labeled data)
- Error rates estimates from unlabeled data

and the target label mean absolute deviation (MAD_{label}).

Our code and data are available at http://www.platanios.org/code

NELL Data Set

) Brain Data Set

NELL Data Set

Task: *Predict whether a noun phrase* (*NP*) *belongs to a category (e.g. city*)

4 logistic regression classifiers using different features:

ADJ: Adjectives that occur with the NP **CMC:** Orthographic features of the NP **CPL:** Phrases that occur with the NP **VERB:** Verbs that appear with the NP

Domain	# Examples
animal	20,733
beverage	18,932
bird	19,263
bodypart	21,840
city	21,778
disease	21,827
drug	20,452
fish	19,162
food	19,566
fruit	18,911
muscle	21,606
person	21,700
protein	21,811
river	21,723
vegetable	18,826

NELL Data Set

2) Brain Data Set

Task: Find which of two 40 second long story passages corresponds to an unlabeled 40 second time series of fMRI neural activity

11 logistic regression classifiers using a different representation of the text passage. For example:

- Number of letters in each word
- Part of speech tag of each word
- Emotions experienced by characters in the story
- etc.

2) Brain Data Set

Conclusion

Estimating binary functions' error rates using unlabeled data

Highly accurate error rates estimates ↓ on two very different data sets

Use **logical constraints** for error estimation

Use those error rates in the context of **self-reflection**

Thank You