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Abstract
Whereas people learn many different types of knowledge 
from diverse experiences over many years, and become 
 better learners over time, most current machine learning 
systems are much more narrow, learning just a single func-
tion or data model based on statistical analysis of a single 
data set. We suggest that people learn better than comput-
ers precisely because of this difference, and we suggest a 
key direction for machine learning research is to develop 
software architectures that enable intelligent agents to also 
learn many types of knowledge, continuously over many 
years, and to become better learners over time. In this 
paper we define more precisely this never-ending learning 
paradigm for machine learning, and we present one case 
study: the Never-Ending Language Learner (NELL), which 
achieves a number of the desired properties of a never-end-
ing learner. NELL has been learning to read the Web 24hrs/
day since January 2010, and so far has acquired a knowledge 
base with 120mn diverse, confidence-weighted beliefs (e.g., 
servedWith(tea,biscuits)), while learning thousands of 
interrelated functions that continually improve its reading 
competence over time. NELL has also learned to reason over 
its knowledge base to infer new beliefs it has not yet read 
from those it has, and NELL is inventing new relational pred-
icates to extend the ontology it uses to represent beliefs. We 
describe the design of NELL, experimental results illustrat-
ing its behavior, and discuss both its successes and short-
comings as a case study in never-ending learning. NELL can 
be tracked online at http://rtw.ml.cmu.edu, and followed on 
Twitter at @CMUNELL.

1. INTRODUCTION
Machine learning is a highly successful branch of artificial 
intelligence (AI), and is now widely used for tasks from spam 
filtering, to speech recognition, to credit card fraud detec-
tion, to face recognition. Despite these successes, the ways 
in which computers learn today remain surprisingly narrow 
when compared to human learning. This paper explores an 
alternative paradigm for machine learning that more closely 
models the diversity, competence and cumulative nature of 
human learning. We call this alternative paradigm never-
ending learning.

To illustrate, note that in each of the above machine 
learning applications, the computer learns only a single 
function to perform a single task in isolation, usually from 
human labeled training examples of inputs and outputs 
of that function. In spam filtering, for instance, training 
examples consist of specific emails and spam or not-spam 
labels for each. This style of learning is often called super-
vised function approximation, because the abstract learning 
problem is to approximate some unknown function f : X → Y  

The original version of this paper appeared in the 
Proceedings of the 29th AAAI Conference on Artificial 
Intelligence (Austin, TX, Jan. 25–30, 2015), 2302–2310.

(e.g., the spam filter) given a training set of input/output 
pairs {〈xi, yi〉} of that function. Other machine learning 
paradigms exist as well (e.g., unsupervised clustering, topic 
modeling, reinforcement learning) but these paradigms 
also typically acquire only a single function or data model 
from a single dataset.

In contrast to these paradigms for learning single func-
tions from well organized data sets over short time-frames, 
humans learn many different functions (i.e., different 
types of knowledge) over years of accumulated diverse 
experience, using extensive background knowledge 
learned from earlier experiences to guide subsequent 
learning. For example, humans first learn to crawl, then 
to walk, run, and perhaps ride a bike. They also learn to 
recognize objects, to predict their motions in different cir-
cumstances, and to control those motions. Importantly, 
they learn cumulatively: as they learn one thing this new 
knowledge helps them to more effectively learn the next, 
and if they revise their beliefs about the first then this 
change refines the second.

The thesis of our research is that we will never truly under-
stand machine or human learning until we can build computer 
programs that, like people,

• learn many different types of knowledge or functions,
• from years of diverse, mostly self-supervised experience,
• in a staged curricular fashion, where previously learned 

knowledge enables learning further types of knowledge,
• where self-reflection and the ability to formulate new 

representations and new learning tasks enable the 
learner to avoid stagnation and performance plateaus.

We refer to this learning paradigm as “never-ending 
learning.” The contributions of this paper are to (1) define 
more precisely the never-ending learning paradigm,  
(2) present as a case study a computer program called 
the NELL which implements several of these capabili-
ties, and which has been learning to read the Web 24hrs/
day since January 2010, and (3) identify from NELL’s 
strengths and weaknesses a number of key design fea-
tures important to any never-ending learning system. This 
paper is an elaboration and extension to an earlier over-
view of the NELL system.27

2. RELATED WORK
Previous research has considered the problem of design-
ing machine learning agents that persist over long periods 
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3. NEVER-ENDING LEARNING
Informally, we define a never-ending learning agent to be a 
system that, like humans, learns many types of knowledge, 
from years of diverse and primarily self-supervised experi-
ence, using previously learned knowledge to improve sub-
sequent learning, with sufficient self-reflection to avoid 
plateaus in performance as it learns. The never-ending 
learning problem faced by the agent consists of a collection of 
learning tasks, and constraints that couple their solutions.

To be precise, we define a never-ending learning problem 
 to be an ordered pair consisting of: (1) a set L = {Li} of 

learning tasks, where the ith learning task Li = 〈Ti, Pi, Ei〉 is 
to improve the agent’s performance, as measured by per-
formance metric Pi, on a given performance task Ti, through 
a given type of experience Ei; and (2) a set of coupling con-
straints C = {〈φk, Vk〉} among the solutions to these learning 
tasks, where φk is a real-valued function over two or more 
learning tasks, specifying the degree of satisfaction of the 
constraint, and Vk is a vector of indices over learning tasks, 
specifying the arguments to φk.

               = (L, C)

where, L = {〈Ti, Pi, Ei〉}

                C = {〈φk, Vk〉}

 (1)

Above, each performance task Ti is a pair Ti ≡ 〈Xi, Yi〉 defining 
the domain and range of a function to be learned .  
The performance metric Pi : f → R defines the optimal 
learned function  for the ith learning task:

where Fi is the set of all possible functions from Xi to Yi.
Given such a learning problem containing n learning tasks, 

a never-ending learning agent  outputs a sequence of solu-
tions to these learning tasks. As time passes, the quality of 
these n learned functions should improve, as measured by 
the individual performance metrics P1 . . . Pn and the degree 
to which the coupling constraints C are satisfied.

To illustrate, consider a mobile robot with sensor inputs 
S and available actions A. One performance task, 〈S, A〉, 
might be for the robot to choose actions to perform from any 
given state, and the corresponding learning task 〈〈S, A〉, P1, E1〉 
might be to learn the specific function f1 : S → A that leads 
most quickly to a goal state defined by performance metric 
P1, from training experience E1 obtained via human teleoper-
ation. A second performance task for the same robot may be 
to predict the outcome of any given action in any given state: 
〈S × A, S〉. Here, the learning task 〈〈S × A, S〉, P2, E2〉 might be 
to learn this prediction function f2 : S × A → S with high accu-
racy as specified by performance metric P2, from experience 
E2 consisting of the robot wandering autonomously through 
its environment.

Note these two robot learning tasks can be coupled by 
enforcing the constraint that the learned function f1 must 
choose actions that do indeed lead optimally to the goal 
state according to the predictions of learned function f2. 
By defining this coupling constraint φ(L1, L2) between the 

of time (e.g., life long learning38), and that learn to learn39 
by various methods, including using previously learned 
knowledge from earlier tasks to improve learning of subse-
quent tasks.11 Still, there remain few if any working systems 
that demonstrate this style of learning in practice. General 
architectures for problem solving and learning (e.g., SOAR 
Laird et al.21, ICARUS Langley et al.22, PRODIGY Donmez 
and Carbonell15, and THEO Mitchell et al.26) have been 
applied to problems from many domains, but again none of 
these programs has been allowed to learn continuously for 
any sustained period of time. Lenat’s work on Automated 
Mathematician (AM) and Eurisko24 represents an attempt 
to build a system that invents concepts, then uses these as 
primitives for inventing more complex concepts, but again 
this system was never allowed to run for a sustained period, 
because the author determined it would quickly reach a pla-
teau in its performance.

Beyond such work on integrated agent architectures, 
there has also been much research on individual subprob-
lems crucial to never-ending learning. For example, work on 
multitask transfer learning10 suggests mechanisms by which 
learning of one type of knowledge can guide learning of 
another type. Work on active and proactive learning15, 40 and 
on exploitation/exploration trade-offs5 presents strategies by 
which learning agents can collect optimal training data from 
their environment. Work on learning of latent representa-
tions2, 29 provides methods that might enable never-ending 
learners to expand their internal knowledge representations 
over time, thereby avoiding plateaus in performance due to 
lack of adequate representations. Work on curriculum learn-
ing3 explores potential synergies across sets or sequences 
of learning tasks. Theoretical characterizations of cotrain-
ing4 and other multitask learning methods1, 32 have provided 
insights into when and how the sample complexity of learn-
ing problems can be improved via multitask learning.

There is also related work on constructing large knowl-
edge bases on the Web—the application that drives our NELL 
case study. The WebKB project,13 Etzioni’s early17 and more 
recent18 work on machine reading the Web, and the YAGO37 
project all represent attempts to construct a knowledge base 
using Web resources, as do commercial knowledge graph 
projects at Google, Yahoo!, Microsoft, Bloomberg, and other 
companies. However, unlike NELL, none of these efforts has 
attempted a sustained never ending learning approach to 
this problem.

Despite this relevant previous research, we remain in the 
very early stages in studying never-ending learning methods. 
We have almost no working systems to point to, and little 
understanding of how to architect a computer system that 
successfully learns over a prolonged period of time, while 
avoiding plateaus in learning due to saturation of learned 
knowledge. The key contributions of this paper are first, to 
present a working case study system, an extended version 
of an early prototype reported in Carlson et al.8, which suc-
cessfully integrates a number of key competencies; second, 
an empirical evaluation of the prototype’s performance over 
time; and third, an analysis of the prototype’s key design fea-
tures and shortcomings, relative to the goal of understand-
ing never-ending learning.
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retraining itself to improve its competence. The result so far 
is a Knowledge Base (KB) with approximately 120mn inter-
connected beliefs (Figure 1), along with millions of learned 
phrasings, morphological features, and Web page structures 
NELL now uses to extract beliefs from the Web. NELL is also 
now learning to reason over its extracted knowledge to infer 
new beliefs it has not yet read, and it is now able to propose 
extensions to its initial manually-provided ontology.

5. NELL’S NEVER-ENDING LEARNING PROBLEM
Above we described the input-output specification of the 
NELL system. Here we describe NELL’s never-ending learn-
ing problem 〈L, C〉 in terms of the general formalism intro-
duced in Section 2, first describing NELL’s learning tasks 
L, then its coupling constraints C. The subsequent section 
describes NELL’s approach to this never-ending learning 
problem, including NELL’s mechanisms for adding its own 
new learning tasks and coupling constraints.

5.1. NELL’s Learning Tasks
Following the notation in Equation (1), each of NELL’s 
learning tasks consists of a performance task, perfor-
mance metric, and type of experience 〈Ti, Pi, Ei〉. NELL faces 
over 4100 distinct learning tasks, corresponding to distinct 
functions fi : Xi → Yi it is trying to learn for its distinct per-
formance tasks Ti = 〈Xi, Yi〉. These tasks fall into several 
broad groups:

Category Classification: Functions that classify noun 
phrases by semantic category (e.g., a Boolean valued func-
tion that classifies whether any given noun phrase refers to 
a food). NELL learns different Boolean functions for each 
of the 293 categories in its ontology, allowing noun phrases 
to refer to entities in multiple semantic categories (e.g., 
“apple” can refer to a “Food” as well as a “Company”). For 
each category Yi NELL learns at least five, and in some cases 
six distinct functions that predict Yi, based on five different 
views of the noun phrase (different Xi’s), which are:

solutions to these two learning tasks, we give the learning 
agent a chance to improve its ability to learn one function by 
success in learning the other.

We are interested in never-ending Learning agents that 
address such never-ending learning problems  = (L, C), 
especially in which the learning agent

• learns many different types of inter-related knowledge; 
that is, L contains many learning tasks, coupled by 
many cross-task constraints,

• from years of diverse, primarily self-supervised experi-
ence; that is, the experiences {Ei} on which learning is 
based are realistically diverse, and largely provided by 
the system itself,

• in a staged, curricular fashion where previously learned 
knowledge supports learning subsequent knowledge; that 
is, the different learning tasks {Li} need not be solved 
simultaneously—solving one helps solve the next, and

• where self-reflection and the ability to formulate new rep-
resentations, new learning tasks, and new coupling con-
straints enables the learner to avoid becoming stuck in 
performance plateaus; that is, where the learner may 
itself add new learning tasks and new coupling con-
straints that help it address the given learning problem .

4. CASE STUDY: NEVER-ENDING LANGUAGE LEARNER
The Never-Ending Language Learner (NELL), an early pro-
totype of which was reported in Carlson et al.8, is a learning 
agent whose task is to learn to read the Web. The input-output 
specification of NELL’s never-ending learning problem is:

Given:

• an initial ontology defining hundreds of categories (e.g., 
Sport, Athlete) and binary relations that hold between 
members of these categories (e.g., AthletePlaysSport(x,y) ),

• approximately a dozen labeled training examples for 
each category and each relation (e.g., examples of Sport 
might include the noun phrases “baseball” and 
“soccer”),

• the Web : an initial 500mn Web pages from the ClueWeb 
2009 collection,7 augmented in 2017 by the addition of 
the ClueWeb 2012 collection6 to form a collection of 
1.233bn Web pages. In addition, Google has granted 
NELL access to 100,000 Google Application Program 
Interface (API) search queries each day.

• occasional interaction with humans (e.g., through 
NELL’s public Website http://rtw.ml.cmu.edu);

Do: Run 24hrs/day, forever, and each day:

• read (extract) more beliefs from the Web, and remove 
old incorrect beliefs, to populate a growing knowledge 
base containing a confidence and provenance for 
each belief,

• learn to read better than the previous day.

NELL has been running non-stop since January 2010, 
each day extracting more beliefs from the Web, then 
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Figure 1. Fragment of the 120mn beliefs NELL has read from the 
Web. Each edge represents a belief triple (e.g., play(MapleLeafs, 
hockey), with an associated confidence and provenance not shown 
here. This figure contains only correct beliefs from NELL’s KB—it has 
many incorrect beliefs as well since NELL is still learning.
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training example . Positive examples are high 
confidence beliefs in NELL’s knowledge base, and 
negative examples are constructed by changing the 
value of Y to form a belief triple which is not in NELL’s 
knowledge base.

Learned Embeddings obtains an top-1 accuracy of 0.88 
when classifying new noun phrases into NELL’s 293 
categories. Figure 2 shows a visualization of the learned 
embeddings using t-SNE.25 In general, the learned 
embeddings nicely reflect the semantics of the noun 
phrases and categories. Figure 2a displays the embed-
dings of 280 categories in NELL. We can see that seman-
tically similar categories tend to be close to each other. 
For example, there is a cluster about body parts (on the 
top) and a cluster about room items (in the bottom). 
Figure 2b further shows three specific room-item cat-
egories and the noun phrases surrounding them. We 
can see that items belonging to kitchens, bedrooms, 
and bathrooms are generally well separated. We also 
find that items that can belong to multiple categories 
tend to locate on the boundaries. For example, “brush” 
and “shoe” could be both a bedroom item and a bath-
room item.

• Relation Classification: These functions classify pairs 
of noun phrases by whether or not they satisfy a given 
relation (e.g., classifying whether the pair 
〈“Pittsburgh,” “U.S.”〉 satisfies the relation “CityLocated-
InCountry(x,y)”). NELL learns distinct boolean-valued 
classification functions for each of the 461 relations 
in its ontology. For each relation, NELL learns four 
distinct classification functions based on different 
feature views of the input noun phrase pair. 
Specifically, it uses the two classification methods 
CPL and OpenEval based on the distribution of text 
contexts found between the two noun phrases on 
Web pages, and it uses the SEAL classification method 
based on HTML structure of Web pages. These meth-
ods are described above in the list of Category 
Classification methods. NELL furthermore uses the 
LE module described above to learn to predict rela-
tion instances from learned vector embeddings of 
noun phrases and learned matrix embeddings for 
relations. Above we described the algorithm used by 
LE to learn vector embeddings for NELL entities and 
for NELL categories, and to learn a matrix embedding 
for the 〈x1, Generalization, x2〉 relation. The same 
algorithm is used to learn a matrix embedding Mr  
for each NELL relation r. As in the case of the 
Generalization relation, LE then assigns a confidence 
score S(〈x1, r, x2〉) to each possible relation triple 
according to the formula , 
where vx1 

 and vx2 
 represent the learned vector embed-

dings for x1 and x2, and where Mr is the learned matrix 
embedding for relation r. In general we find LE’s infer-
ences about relations other than Generalization are 
less accurate than for the Generalization relation. 

• Character string features of the noun phrase (e.g., whether 
the noun phrase ends with the character string “…
burgh”). This is performed by the Coupled Morphological 
Classifier (CMC) system,8 which represents the noun 
phrase by a vector with thousands of string features.

• The distribution of text contexts found around this noun 
phrase in 1.233bn English Web pages from the 
ClueWeb2009 and ClueWeb2012 text corpus (e.g., how 
frequently the noun phrase N occurs in the context 
“mayor of N”). This is performed by the Coupled Pattern 
Learner (CPL) system.9

• The distribution of text contexts found around this noun 
phrase through active Web search. This is performed by 
the OpenEval system,36 which uses somewhat different 
context features from the above CPL system, and uses 
real time Web search to collect this information.

• Hypertext Markup Language (HTML) structure of Web 
pages that mention the noun phrase (e.g., whether the 
noun phrase is mentioned inside an HTML list, along-
side other known cities). This is performed by the Set 
Expander for Any Language (SEAL) system.41

• Visual images associated with this noun phrase, when 
the noun phrase is given to an image search engine. 
This is performed by the Never Ending Image Learner 
(NEIL) system,12 and applies only to a subset of NELL’s 
ontology categories (e.g., not to non-visual categories 
such as MusicGenre).

• Learned vector embeddings of the noun phrases. This is 
performed by the Learned Embeddings (LE) module 
which has not been previously described, so we sum-
marize the approach in some detail here. LE44 learns a 
vector embedding for each noun phrase associated 
with each NELL entity, a vector embedding for each of 
the 293 categories in NELL’s ontology, and a matrix 
embedding to represent the Generalizations relation 
that relates each NELL entity to the general categories 
to which it belongs. We employ a neural network archi-
tecture to learn these vector and matrix embeddings, 
training them on each NELL iteration to maximize 
their fit to the beliefs in NELL’s current knowledge 
base. Note this knowledge base is updated on each 
NELL iteration in response to the combined results of 
all of NELL’s reading and inference modules. 
Specifically, LE quantifies its confidence in the asser-
tion that Generali zation(X, Y) using the scoring func-
tion: , where vXi

 and vYi
 are 

d-dimensional vectors representing noun phrase Xi 
and NELL category Yi respectively, and where M is a d × 
d matrix representing the Generalization relation. The 
vector embedding vXi

 is constructed by first averaging 
the vectors of the words in the noun phrase, then con-
catenating to this vector the word vector of its head 
noun. These vectors are initialized with pre-trained 
vectors for each word, obtained from Wieting et al.42 
These word vectors are then fine tuned during train-
ing, and used to produce the noun phrase vectors as 
described above. During training, LE minimizes a 
ranking loss  for each 
positive training example 〈Xi, Yi〉, paired with a negative 
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visual images, which is handled by the NEIL system with 
its own training procedures.

5.2. NELL’s Coupling Constraints
The second component of NELL’s never-ending learning 
task is the set of coupling constraints which link its learning 
tasks. NELL’s coupling constraints fall into five groups. We 
describe them below as hard logical constraints. However, 
NELL uses these primarily as soft constraints that can be vio-
lated at some penalty cost.

• Multi-view co-training coupling. NELL’s multiple meth-
ods for classifying noun phrases into categories (and 
noun phrase pairs into relations) provide a natural co-
training setting,4 in which alternative classifiers for the 
same category should agree on the predicted label when-
ever they are given the same input, even though their 
predictions are based on different noun phrase fea-
tures. To be precise, let vk(z) be the feature vector used by 
the kth function, when considering input noun phrase z. 
For any pair of functions fi : vi(Z) → Y and fj : vj(Z) → Y that 
predict the same Y from the same Z using the two differ-
ent feature views vi and vj, NELL uses the coupling con-
straint (∀z)fi(z) = fj(z). This couples the tasks of learning   
fi and fj.

• Subset/superset coupling. When a new category is added 
to NELL’s ontology, the categories which are its imme-
diate parents (supersets) are specified (e.g., “Beverage” 
is declared to be a subset of “Food.”). When category C1 
is added as a subset of category C2, NELL uses the cou-
pling constraint that (∀x)C1(x) → C2(x). This couples 
learning tasks that learn to predict C1 to those that 
learn to predict C2.

• Multi-label mutual exclusion coupling. When a category 
C is added to NELL’s ontology, the categories that are 
known to be disjoint from (mutually exclusive with) C 
are specified (e.g., “Beverage” is declared to be mutually 
exclusive with “Emotion,” “City,” etc.). These mutual 
exclusion constraints are typically inherited from more 
general classes, but can be overridden by explicit asser-
tions. When category C1 is declared to be mutually 
exclusive with C2, NELL adopts the constraint that  
(∀x)C1(x) → ¬C2(x).

• Coupling relations to their argument types. When a rela-
tion is added to NELL’s ontology, the types of its argu-
ments must be defined in terms of NELL categories 
(e.g., “zooInCity(x,y)” requires arguments of types 
“Zoo” and “City” respectively). NELL uses these argu-
ment type declarations as coupling constraints between 
its category and relation classifiers.

• Horn clause coupling. Whenever NELL learns a Horn 
clause rule to infer new KB beliefs from existing 
beliefs, that rule serves as a coupling constraint to 
augment NELL’s never ending learning problem  
〈L, C〉. For example, when NELL learns a rule of the 
form (∀x, y, z)R1(x, y) ∧ R2(y, z) → R3(x, z) with probabil-
ity p, this rule serves as a new probabilistic coupling 
constraint over the functions that learn relations R1, 
R2, and R3. Each learned Horn clause requires that 

This may be due in part to the smaller number of 
training examples for these relations, and may in part 
be due to the greater suitability for our approach to 
semantic category assignment (i.e., predicting the 
Generalization) compared to predicting other rela-
tions such as PersonFoundedCompany().

• Entity Resolution: Functions that classify whether 
pairs of noun phrases are synonyms. NELL’s knowl-
edge base represents noun phrases as distinct from 
the entities to which they can refer. This is essential 
because polysemous words can refer to multiple types 
of entities (e.g., the word “coach” can refer to a type of 
“person,” or a type of “vehicle”), and because synony-
mous words can refer to the same entity (e.g., “NYC,” 
“New York City” and “Big Apple” are synonyms for the 
same entity). In order to deal with polysemy, NELL 
simply allows a noun phrase to be classified into mul-
tiple categories if there is strong evidence according 
to its reading methods. To deal with synonymy, NELL 
learns explicit functions that classify noun phrase 
pairs by whether or not they are synonyms (e.g., 
whether “NYC” and “Big Apple” can refer to the same 
entity). This classification method is described in 
Krishnamurthy and Mitchell.20 For each of NELL’s 
293 categories, it co-trains two synonym classifiers. 
One classifier is based on string similarity between 
the two noun phrases (e.g., “NYC” and “New York 
City” have similar string features). The second is 
based on similarities in the beliefs NELL has extracted 
(e.g., if NELL’s KB believes that “NYC” and “New York 
City” have the same mayor, this is evidence that the 
assumed two city names may be synonyms, though 
belonging to the same country might not be evidence 
that two city names are synonyms). NELL learns for 
each of its categories (e.g., “city”), what are the cate-
gory specific types of knowledge that are evidence of 
synonymy, and which types of string features indicate 
synonymy.

• Inference Rules among belief triples: Functions that map 
from NELL’s current KB, to new beliefs it should add to 
its KB. For each relation in NELL’s ontology, the corre-
sponding function is represented by a collection of 
restricted Horn Clause rules learned by the Path 
Ranking Algorithm (PRA) system.19, 23

Each of the above functions f : X → Y represents a per-
formance task Ti = 〈X, Y〉 for NELL, and each maps to the 
learning task of acquiring that function, given some type 
of experience Ei and a performance metric Pi to be opti-
mized during learning. In NELL, the performance met-
ric Pi to optimize is simply the accuracy of the learned 
function. In all cases except one, the experience Ei is a 
combination of human-labeled training examples (the 
dozen or so labeled examples provided for each category 
and relation in NELL’s ontology, plus labeled examples 
contributed over time through NELL’s Website), a set 
of NELL self-labeled training examples corresponding to 
NELL’s current knowledge base, and a huge volume of 
unlabeled Web text. The one exception is learning over 
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learning, performing an E-like step and an M-like step on 
each iteration through the loop. During the E-like step, the 
set of beliefs that form the knowledge base is re-estimated; 
that is, each reading and inference module in NELL pro-
poses updates to the KB (additions and deletions of spe-
cific beliefs, with specific confidences and provenance 
information). The Knowledge Integrator (KI) both records 
these individual recommendations and makes a final deci-
sion about the confidence assigned to each potential belief 
in the KB. Then, during the M-like step, this refined KB is 
used to retrain each of these reading and inference mod-
ules, employing module-specific learning algorithms for 
each. The result is a large-scale coupled training system 
in which thousands of learning tasks are guided by one 
another’s results, through the shared KB and coupling 
constraints.

Notice that a full EM algorithm is impractical in NELL’s 
case; NELL routinely considers tens of millions of noun 
phrases, yielding 1017 potential relational assertions among 
noun phrase pairs. It is impractical to estimate the prob-
ability of each of these potential latent assertions on each 
E-like step. Instead, NELL constructs and considers only 
the beliefs in which it has highest confidence, limiting 
each software module to suggest only a bounded number 
of new candidate beliefs for any given predicate on any 
given iteration. This enables NELL to operate tractably, 
while retaining the ability to add millions of new beliefs 
over many iterations, and to delete beliefs in which it sub-
sequently loses confidence. In addition, NELL enforces its 
consistency constraints in a limited-radius fashion on each 
iteration (i.e., if one belief changes, the only other beliefs 
influenced are those coupled directly by some constraint; 
compositions of constraints are not considered). However, 
across multiple iterations of its EM-like algorithm, the 
influence of any given belief update can propagate through-
out the knowledge graph as neighboring beliefs are them-
selves revised.

6.2. Knowledge Integrator in NELL
The KI integrates the incoming proposals for KB updates. 
For efficiency, the KI considers only moderate-confidence 
candidate beliefs, and re-assesses confidence using a lim-
ited radius subgraph of the full graph of consistency con-
straints and beliefs. As an example, for each new relational 
triple that the KI asserts, it checks that the entities in the 
relational triple have a category type consistent with the 
relation, but does not consider using new triples as a trig-
ger to update beliefs about these argument types during the 
same iteration. Over multiple iterations, the effects of con-
straints propagate more widely through this graph of beliefs 
and constraints. In Pujara et al.35 a more effective algorithm 
is proposed for the joint inference problem faced by NELL’s 
KI; we believe it will be helpful to upgrade NELL’s KI in the 
future to use this approach.

6.3. Adding Learning Tasks and Ontology Extension 
in NELL
NELL has the ability to extend its ontology by invent-
ing new relational predicates using the OntExt system.28 

learned functions mapping from noun phrase pairs to 
relations labels for R1, R2, and R3 are consistent with 
this Horn clause; hence, they are analogous to NELL’s 
subset/superset coupling constraints, which require 
that functions mapping from noun phrases to cate-
gory labels should be consistent with the subset/
superset constraint.

NELL’s never ending learning problem thus contains 
over 4100 learning tasks, inter-related by over a million 
coupling constraints. In fact, NELL’s never ending learning 
problem 〈L, C〉 is open ended, in that NELL has the ability to 
add both new consistency constraints in the form of learned 
Horn clauses (as discussed above) and new learning tasks, 
by inventing new predicates for its ontology (as discussed 
below).

6. NELL’S LEARNING METHODS AND ARCHITECTURE
The software architecture for NELL, depicted in Figure 3,  
includes a KB which acts as a blackboard through which NELL’s 
various learning and inference modules communicate.a As 
shown in Figure 3, these software modules map closely to 
the learning methods (CPL, CMC, SEAL, OpenEval, PRA, and 
NEIL) for the different types of functions mentioned in the 
previous section, so that NELL’s various learning tasks are 
partitioned across these modules.

6.1. Learning in NELL as an Approximation to EM
NELL is in an infinite loop analogous to an Expectation-
Maximization (EM) algorithm14, 30 for semi-supervised 

a The KB is implemented as a frame-based knowledge representation 
which represents language tokens (e.g., NounPhrase:bank) distinct from 
non-linguistic entities to which they can refer (e.g., Company:bank, 
LandscapeFeature:bank), and relates the two by separate CanReferTo(noun 
phrase, entity) assertions.
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Figure 3. NELL’s software architecture. NELL’s growing knowledge 
base (red box) serves as a shared blackboard through which its 
various reading and inference modules (green box) interact. On each 
NELL iteration the knowledge base is first updated by integrating 
proposals from the various reading and inference modules. The 
revised knowledge base is then used to retrain each of these 
modules.
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lexeme (plus preposition where available), and object triples 
(e.g., <horse, eat, hay>, <john, eat with, fork>) found by pars-
ing the 500 mn English Web pages in NELL’s initial cache of 
Web pages from ClueWeb2009.

VerbKB is guided by NELL’s knowledge about the seman-
tic categories to which the subject and object belong. The  
groups of <subjectCategory verbCluster, objectCategory> pat-
terns discovered by VerbKB are proposed as new typed 
relations for NELL. For example, VerbKB has proposed 
that the group of verbs {have, experience, suffer, survive, 
sustain, bear, endure, tolerate} represents a potential new 
NELL relation PersonHaveDisease(person,disease), when 
these verbs occur with a subject belonging to the NELL cat-
egory “Person” and an object of NELL category “Disease.” 
VerbKB has clustered 65,000 verb lexemes (+prepositions) 
which cover 98% of all verb mentions in ClueWeb2010 and 
has proposed a collection of 86,000 verb clusters (58,000 of 
which are non-singleton clusters) as new relations to NELL. 
Because this very large number of proposed relations raises 
scaling issues for NELL’s current hardware and software, we 
are currently exploring ways to scale up NELL, and ways to 
select among these proposed relations by relying on NELL’s 
Twitter interfacec followers to decide (as described in Pedro 
and Hruschka31) which among these relations will be most 
interesting for NELL to learn. Although we are still working 
to incorporate this into routine use by NELL’s never-ending 
execution run, we are optimistic that this will provide a sig-
nificant increase in the coverage and capability of NELL’s 
learned knowledge.

6.4. Self-Reflection and Self-Evaluation
One important capability we wish to add to NELL is the abil-
ity to self-reflect on, and self-evaluate its own performance, 
to enable it to focus its learning efforts where it most needs 
improvement. Although NELL’s architecture does not yet 
have such a self-reflection component, we have recently 
developed and tested the key algorithms that will enable it 
to estimate the accuracies of thousands of functions it is 
learning, based solely on the unlabeled data it has access to. 
The key theoretical question here is “under what conditions 
can unlabeled data be used to estimate accuracy of learned 
functions?” Surprisingly, we have found that there are con-
ditions under which the observed consistency among differ-
ent learned functions applied to unlabeled data can be used 
to derive highly precise estimates of accuracies of these func-
tions, and that these methods work well for accuracy estima-
tion in NELL.

For example, in Platanios et al.32 we show that if one has 
three or more approximations to the same function (e.g., 
NELL’s different learned classifiers that predict whether 
a noun phase refers to a city, based on different views of 
the noun phrase), if these functions are more accurate 
than chance, and if their errors are independent, then 
the rates at which these functions agree on the classifica-
tion of unlabeled examples can be used to solve exactly 
for their accuracies. While NELL comes close to meeting 

OntExt searches for new relations by considering every 
pair of categories in NELL’s current ontology, to search for 
evidence of a new, frequently discussed relation between 
members of that category pair. It performs this search in 
a three step process: (1) Extract sentences mentioning 
known instances of both categories (e.g., for the category 
pair 〈drug,disease〉 the sentence Prozac may cause migraines 
might be extracted if prozac and migraines were already 
present in NELL’s KB). (2) From the extracted sentences, 
build a context by context co-occurrence matrix, then clus-
ter the related contexts together. Each cluster corresponds 
to a possible new relation between the two input category 
instances. (3) Employ a trained classifier, and a final stage 
of manual filtering, before allowing the new relation (e.g., 
DrugHasSideEffect(x,y) ) to be added to NELL’s ontology. 
OntExt has added 62 new relations to NELL’s ontology; a 
sample is shown in Figure 4. Note the invention and intro-
duction of each new relation into NELL’s ontology spawns 
a number of new tasks. These include new “learning to 
read” tasks, to classify which noun phrase pairs satisfy 
the relation, based on different views of the noun phrase 
pair. Each new relation also spawns a new task of learning 
Horn clause rules to infer this new relation from others, 
and of course the new relation also becomes available for 
representing new rules that infer instances of other NELL 
relations.

In addition to the OntExt algorithm for proposing new 
relations, we have more recently developed the verb knowl-
edge base (VerbKBb) which proposes new relations on a much 
larger scale.43 Verbs and verb phrases naturally express rela-
tions between noun phrases, and can provide the high cov-
erage vocabulary of relation predicates required to represent 
beliefs in arbitrary text. VerbKB groups semantically similar 
verb patterns by analyzing the statistics of all subject, verb 

b http://gourierverb.azurewebsites.net.

c https://twitter.com/cmunell.

athleteWonAward
animalEatsFood
languageTaughtInCity
clothingMadeFromPlant
beverageServedWithFood
fishServedWithFood
athleteBeatAthlete
athleteInjuredBodyPart
arthropodFeedsOnInsect
animalEatsVegetable
plantRepresentsEmotion
foodDecreasesRiskOfDisease

clothingGoesWithClothing
bacteriaCausesPhysCondition
buildingFeatureMadeFromMaterial
emotionAssociatedWithDisease
foodCanCauseDisease
agriculturalProductAttractsInsect
arteryArisesFromArtery
countryHasSportsFans
bakedGoodServedWithBeverage
beverageContainsProtein
animalCanDevelopDisease
beverageMadeFromBeverage

Sample of self-discovered NELL relations

Figure 4. Sample of relations automatically discovered by 
NELL’s OntExt algorithm. When NELL adds a newly discovered 
relation to its ontology, its learning algorithms are automatically 
triggered to seek new instances. For example, since adding 
these new relations NELL has added hundreds of instances of 
buildingFeatureMadeFromMaterial including (tiles, porcelain) 
and (garage doors, steel), and thousands of instances of 
clothingGoesWithClothing including (tee shirt, jeans), (tuxedo jacket, 
tie) and (gloves, warm coat).
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these conditions, in general it does not satisfy the assump-
tion that its different functions make completely inde-
pendent errors. However, we found it possible to weaken 
the assumption of independent errors, and effectively 
replace it by a prior stating that more independent errors 
are more probable. Experimental results show that these 
algorithms, run on NELL’s learned functions for 15 rep-
resentative categories, yield accuracy estimates that devi-
ate on average less than 0.01 from the true accuracies. In 
Platanios et al.33 we introduce a related Bayesian approach 
which also leverages the fact that NELL is learning to pre-
dict many different functions for each input noun phrase, 
hence leveraging the full mulit-view, multi-task nature of 
NELL’s learning problem. Finally, in Platanios et al.34 we 
also propose a probabilistic logic approach that further 
leverages the information provided by logical constraints 
between the outputs of the functions that NELL is learning 
to predict (e.g., a noun phrase that refers to a city has to 
also refer to a location).

7. EMPIRICAL EVALUATION
Our primary goal in experimentally evaluating NELL is to 
understand the degree to which NELL improves over time 
through learning, both in its reading competence, and in 
the size and quality of its KB.

First, consider the growth of NELL’s KB over time, from 
its inception in January 2010 through July 10, 2017, dur-
ing which NELL completed 1064 iterations. The left panel 
of Figure 5 shows the number of beliefs in NELL’s KB over 
time, and the right panel of Figure 5 shows the number of 
beliefs for which NELL holds high confidence. Note that 
as of July 2017, NELL’s KB contains approximately 117mn 
beliefs with varying levels of confidence, including 3.81mn 
that it holds in high confidence. Here, “high confidence” 
indicates either that one of NELL’s modules assigns a con-
fidence of at least 0.9 to the belief, or that multiple modules 
independently propose the belief.

As Figure 5 illustrates, NELL’s KB is clearly growing, 
though its high confidence beliefs constitute only about 3% 
of the total set of beliefs it is considering. Although NELL 
has now saturated some of the categories and relations in 
its ontology (e.g., for the category “Country” it extracted 
most actual country names during the first few hundred 

iterations), the knowledge base nevertheless continues to 
grow overall. This ongoing growth is due in part to the fact 
that NELL’s ontology extension module is adding new pred-
icates to the ontology over time (e.g., athleteInjuredBody-
Part(athlete, bodyPart)), creating the opportunity for NELL 
to acquire new beliefs that it could not even represent in its 
original ontology.

Beyond the volume of beliefs, consider the accuracy of 
NELL’s reading competence over time. To evaluate this, we 
applied different versions of NELL obtained at different 
iterations in its history, to extract beliefs from its cache of 
English Web pages, plus the world wide Web as accessed 
through NELL’s reading modules. We then manually 
evaluated the accuracy of the beliefs extracted by these 
different historical versions of NELL, to measure NELL’s 
evolving reading competence. To obtain different versions 
of NELL over time, we relied on the fact that NELL’s state  
at any given time is fully determined by its KB. In particu-
lar, given NELL’s KB at iteration i we first had NELL train 
itself on that KB plus unlabeled text from the Web, then 
had it apply its trained methods to a test set of unlabeled 
Web text to propose a rank-ordered set of confidence-
weighted beliefs. We evaluated the accuracy of these 
beliefs to measure NELL’s evolving competence at differ-
ent points in time.d

In greater detail, we first selected 12 different points in 
time to test NELL’s reading competence: iterations 166, 261, 
337, 447, 490, 561, 641, 731, 791, 886, 960, and 1026. These 
iterations span from the inception of NELL in January 2010 
through November 2016. For each of those iterations, we 
trained NELL using the KB from that iteration, then evalu-
ated its reading competence over a representative sample of 
18 categories and 13 relations (31 predicates in total) from 
NELL’s initial ontology. Each iteration-specific trained ver-
sion of NELL was then applied to produce a ranked list of 
the top 1000 novel predictions, omitting any prediction cor-
responding to a noun phrase or relation instance for which 
NELL had received human feedback at any point in its his-
tory. To estimate NELL’s reading competence at each point 
we first created a pool of test instances to manually anno-
tate. For each iteration to be evaluated, this pool included 
the top 10 ranked predictions for each predicate, 20 more 
predictions sampled uniformly at random from ranks 11 
to 100, and an additional 20 from ranks 101 to 1000. This 
provided 50 (potentially overlapping) instances per predi-
cate from each iteration, averaging about 350 instances per 
predicate over all iterations. We manually annotated each 
of these instances as correct or incorrect, yielding approxi-
mately 11,000 total annotated beliefs regarding 31 predi-
cates, which we used to evaluate NELL’s learned reading 
competence at each iteration.

The results of this evaluation are summarized in Figure 6,  
which shows the improvement in NELL’s reading compe-
tence over time, as measured by NELL’s estimated Mean 
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Figure 5. NELL KB size over time. Total number of beliefs (left) and 
number of high confidence beliefs (right) versus iterations. Left plot 
vertical axis is tens of millions, right plot vertical axis is in millions. The 
horizontal axis covers NELL iterations from January 2010 until July 2017.

d To be precise, for NELL iterations prior to and including November 2014, 
we used test data from the Web as of November 2014. For evaluations of 
NELL’s competence in November 2015 and November 2016, we instead used 
the Web as it existed on those dates.
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feedback (an average of 1,467 per month). Note the large 
burst of feedback from iteration 100 to 177. During the first 
two years, the bulk of feedback was provided by members 
of the NELL research project, though in more recent years 
most of the feedback is now crowdsourced, that is, provided 
by external visitors to the NELL Website, or by followers of @
CMUNELL on Twitter.

In addition to the above aggregate measures of NELL’s 
behavior, it is interesting to consider its detailed behavior for 
specific predicates. Here we find that NELL’s performance 
varies dramatically across predicates: the precision over 
NELL’s 1000 highest confidence predictions for categories 
such as “river,” “body part,” and “physiological condition” 
is well above 0.95, whereas for “machine learning author” 
and “city capital of country(x,y)” accuracies are well below 
0.5. One factor influencing NELL’s ability to learn well is 
whether it has other mutually exclusive categories to learn—
this mutually exclusive relationship provides a coupling con-
straint that typically yields valuable negative examples. For 
instance, many of NELL’s errors for the category “machine 
learning author” are computer science researchers (e.g., 
“Robert Kraut”) who do not happen to work in the area of 
machine learning—NELL would presumably learn this cat-
egory better if we added to its ontology other categories such 
as “HCI author” to provide examples that are usually mutu-
ally exclusive. Another factor is the number of actual mem-
bers of the category: for example, the category “planet” has 
only a small number of actual members, but NELL is search-
ing for more, so it proposes members such as “counter earth” 
and “asteroid ida.” In some cases, NELL performs poorly for 
a predicate due to a particular error which propagates due to 
its bootstrap-style learning from unlabeled or self-labeled 
data. For example, for the category “sports team position” 
NELL has numerous correct members such as “quarterback” 
and “first base,” but it has acquired a systematic error in hav-
ing a strong belief that phrases ending with “layer” (e.g., 
“defence layer” and “cloud layer”) refer to sports positions. 
While some do, most do not, yet NELL has no easy way to 
determine this.

It is important to realize that as NELL progresses, the 
task of adding the next new belief to the knowledge base 
naturally becomes more difficult. NELL’s redundancy-
based reading methods tend to extract the most fre-
quently-mentioned beliefs earlier (e.g., for the category 
“emotions” NELL first extracted frequently mentioned 
emotions such as “gladness” and “loneliness”). But once 
it has extracted the frequently mentioned instances which 
are easiest for its statistically-based methods, it later can 
only grow the KB by extracting less frequently mentioned 
beliefs (e.g., later the emotions it was able to add were 
more obscure instances such as “incredible lightness,” 
“cavilingness,” and “nonop-probriousness,” as well as 
some non-emotion phrases).

This increasing difficulty over time seems to be inher-
ent to the task of never-ending learning. Meeting this 
challenge in NELL suggests several opportunities for 
future research: (1) add a self-reflection capability to NELL 
to enable it to detect where it is doing well, where it is 
doing poorly, when it has sufficiently populated any given 

Average Precision (MAP) over this sample of 1000 most con-
fident predictions for each of these 31 predicates. Taken 
together, the results in the Figure 6 and the results of Figure 5 
show that over several years NELL’s reading accuracy, and 
the accuracy of its most confident beliefs have grown at the 
same time that the volume of beliefs in the knowledge base 
has also grown by millions.

Next, we summarize feedback from humans to NELL. 
This feedback is nearly all negative feedback identifying 
NELL’s incorrect beliefs. Figure 7 shows the distribution of 
this negative feedback from humans to NELL over its first 
802 iterations, which is very similar to the distribution of 
feedback in more recent iterations. During this period, 
NELL received on average 2.4 negative feedback labels per 
predicate, per month, for a total of 85,088 items of negative 
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(e.g., river, city). Each new relation NELL introduces leads 
to new learning tasks such as learning to extract the rela-
tion from text, and learning to infer instances of the relation 
from other beliefs.

Organize the set of learning tasks into an easy-to-increas-
ingly-difficult curriculum. Given a complex set of learning 
tasks, it will often be the case that some learning tasks 
are easier, and some produce prerequisite knowledge for 
others. In NELL, we have evolved the system by manually 
introducing new types of learning tasks over time. During 
NELL’s first six months, its only tasks were to classify noun 
phrases into categories, and noun phrase pairs into rela-
tions. Later, once it achieved some level of competence at 
these, and grew its KB accordingly, it became feasible for 
it to confront more challenging tasks. At that point, we 
introduced the task of datamining the KB to discover use-
ful Horn clause rules, as well as the task of discovering new 
relational predicates based on NELL’s knowledge of cat-
egory instances. A key open research question is how the 
learning agent might itself evolve a useful curriculum of 
learning tasks.

NELL also has many limitations, which suggest addi-
tional areas for research into never-ending learning agents:

• Self reflection and an explicit agenda of learning sub-
goals. At present, NELL suffers from the fact that it has 
a very weak ability to monitor its own performance and 
progress. It does not notice, for example, that it has 
learned no useful new members of the “country” cate-
gory for the past year, and it continues to work on this 
problem although its knowledge in this area is satu-
rated. Furthermore, it makes no attempt to allocate its 
learning effort to tasks that will be especially produc-
tive (e.g., collecting new Web text describing entities 
about which it has only low confidence beliefs). It is 
clear that developing a self-reflection capability to 
monitor and estimate its own accuracy, and to plan 
specific learning actions in response to perceived 
needs, would allow the system to use its computational 
effort more productively.

• Pervasive plasticity. Although NELL is able to modify 
many aspects of its behavior through learning, other 
parts of its behavior are cast in stone, unmodifiable. 
For example, NELL’s method for detecting noun 
phrases in text is a fixed procedure not open to 
 learning. In designing never-ending learning agents, 
it will be important to understand how to architect the 
agent so that as many aspects of its behavior as possi-
ble are plastic—that is, open to learning. Otherwise, 
the agent runs the risk of reaching a performance  
plateau in which further improvement requires modifi-
cations to a part of the system that is not itself 
modifiable.

• Representation and reasoning. At present, NELL uses a 
simple frame based knowledge representation, aug-
mented by the PRA reasoning system which performs 
tractable but limited types of reasoning based on 
restricted Horn clauses. NELL’s competence is already 
limited in part by its lack of more powerful reasoning 

category or relation, enabling it to allocate its efforts in a 
more intelligently targeted fashion, (2) broaden the scope 
of data NELL uses to extract beliefs, for example by includ-
ing languages beyond English,16 image data as well as 
text, and new continuous streams of data such as Twitter, 
(3) expand NELL’s ontology dramatically, both by rely-
ing more heavily on automated algorithms for inventing 
new relations and categories, and by merging other open-
source ontologies such as DBpedia into NELL’s ontology, 
and (4) add a new generation of “micro-reading” methods 
to NELL—methods that perform deep semantic analy-
sis of individual sentences and text passages, and which 
therefore do not need to rely on redundancy across the 
Web to achieve accurate reading. We are currently actively 
exploring each of these directions.

8. DISCUSSION
Based on the above empirical analysis, it is clear that NELL 
is successfully learning to improve its reading competence 
over time, and is using this increasing competence to build 
an ever larger KB of beliefs about the world. In this paper, 
we present NELL as an early case study of a never-ending 
learning system. What are the lessons to be learned from 
this case study? Our experience with NELL suggests four 
useful design features that have led to the successes it has 
had—design features we recommend for any never-ending 
learning system:

To achieve successful semi-supervised learning, couple the 
training of many different learning tasks. The primary reason 
NELL has succeeded in learning thousands of functions 
from only a small amount of supervision is that it has been 
designed to simultaneously learn thousands of different 
functions that are densely connected by a large number of 
coupling constraints. As progress begins to be made on one 
of these learning tasks, the coupling constraints allow the 
learned information to constrain subsequent learning for 
other tasks.

Allow the agent to learn additional coupling constraints. 
Given the critical importance of coupling the training of 
many functions, great gains can be had by automatically 
learning additional coupling constraints. In NELL, this is 
accomplished by learning restricted-form probabilistic 
Horn clauses by data-mining NELL’s KB. NELL has learned 
hundreds of thousands of probabilistic Horn clauses and 
related probabilistic inference rules which it uses to infer 
new KB beliefs it has not yet read. As a side effect of creating 
new beliefs which are subsequently used to retrain NELL’s 
reading functions, these Horn clauses also act as coupling 
constraints to further constrain and guide subsequent joint 
learning of NELL’s reading functions for relations mentioned 
by the Horn clause.

Learn new representations that cover relevant phenom-
ena beyond the initial representation. To continuously 
improve, and to avoid reaching a plateau in performance, 
a never-ending learning system may need to extend its 
representation beyond what is initially provided. NELL 
has a primitive but already-useful ability to extend its rep-
resentation by suggesting new relational predicates (e.g., 
RiverFlowsThroughCity(x,y) ) between existing categories 
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produce ever-improving modifications to itself in prin-
ciple. A second, related issue is whether its learning 
mechanisms will make these potential changes, con-
verging in practice given a tractable amount of compu-
tation and training experience.
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components; for example, it currently lacks methods 
for representing and reasoning about time and space. 
Hence, core AI problems of representation and trac-
table reasoning are also core research problems for 
never-ending learning agents. In addition, recent 
research in natural language has shown that work-
ing wth non-symbolic vector embeddings of words, 
phrases and entities, learned via deep neural networks, 
has many advantages. In NELL, the recent addition of 
the LE method has similarly yielded improvements in 
NELL’s ability to extract new instances of categories 
and relations. However, an even more dramatic adop-
tion of vector embeddings learned via deep networks 
would be possible, for example, providing a continu-
ous space of category and relation predicates repre-
sented by vectors and matrices, fundamentally 
changing the framing of the ontology extension prob-
lem (i.e., if every relation is represented by a matrix, 
the set of possible matrices is the set of possible rela-
tions in the ontology).

The study of never-ending learning raises important 
 conceptual and theoretical problems as well, including:

• The relationship between consistency and correctness. 
An autonomous learning agent can never truly perceive 
whether it is correct—it can at best detect only that it is 
internally consistent. For example, even if it observes 
that its predictions (e.g., new beliefs predicted by 
NELL’s learned Horn clauses) are consistent with what 
it perceives (e.g., what NELL reads from text), it cannot 
distinguish whether that observed consistency is due to 
correct predictions and correct perceptions, or incorrect 
predictions and correspondingly incorrect perceptions. 
This is important in understanding never-ending learn-
ing, because it suggests organizing the learning agent 
to become increasingly consistent over time, which is 
precisely how NELL uses its consistency constraints to 
guide learning. A key open theoretical question there-
fore is “under what conditions can one guarantee that 
an increasingly consistent learning agent is also an 
increasingly correct agent?” Platanios et al.32 provides 
one step in this direction, by providing an approach 
that will soon allow NELL to estimate its accuracy based 
on the observed consistency rate among its learned 
functions, but much remains to be understood about 
this fundamental theoretical question.

• Convergence guarantees in principle and in practice. A 
second fundamental question for never-ending learn-
ing agents is “what agent architecture is sufficient to 
guarantee that the agent can in principle generate a 
sequence of self-modifications that will transform it 
from its initial state to an increasingly high perfor-
mance agent, without hitting performance plateaus?” 
Note this may require that the architecture support per-
vasive plasticity, the ability to change its representa-
tions, etcetera. One issue here is whether the architecture 
has sufficient self-modification operations to allow it to 
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He was the conscience of the  
computing industry...and paid for it.

The first full-length biography of Edmund Berkeley, 
computing pioneer, social activist, and founding 
member of the ACM. It is an historical narrative of a 
man ultimately in favor of engineering peace, instead 
of war, and how his career was ultimately damaged by 
politicians determined to portray him as a Communist 
sympathizer. Berkeley’s life work provides a lens to 
understand social and political issues surrounding the 
early development of electronic computers which ties 
directly to current debates about the use of autonomous 
intelligent systems.




